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It is hard to overstate the importance of quality and price for users and advertisers in digital

markets. According to one estimate, there are now 5.6 billion internet users worldwide, averaging 6.6

hours online each day (Kemp 2025). About 63 percent of the $770 billion yearly global advertising

budget is spent online (Dentsu 2024). Given this importance, there is significant concern about

digital platforms’ market power and how this might affect outcomes for users and advertisers (Stigler

Center 2019; CMA 2020; Scott Morton and Dinielli 2020).

Facebook and Instagram are one key example of this discussion. In 2020, the U.S. Federal

Trade Commission (FTC) sued Meta for antitrust violations, arguing that the company had il-

legally monopolized the “personal social networking” market and requesting that Instagram and

WhatsApp be divested to restore competition. As the case went on trial in spring 2025, the FTC

and Meta disagreed over market definition, the extent of Meta’s market power, and how divesting

Instagram might affect user experiences and ad prices. The FTC (2021) argued that the relevant

market effectively included only Facebook, Instagram, and Snapchat, while Meta (2021a) replied

that “The FTC’s fictional market ignores the competitive reality: Facebook competes vigorously

with TikTok, iMessage, Twitter, Snapchat, LinkedIn, YouTube, and countless others to help peo-

ple share, connect, communicate or simply be entertained.” An FTC expert argued that merging

Facebook and Instagram had increased ad load (Hemphill 2025), while a Meta expert argued that

again separating the platforms would increase ad load (Benedict 2025).

In this paper, we consider an important subset of these issues. In theory, how do mergers or

separations of digital media platforms affect advertising loads and total surplus? In the context

of Facebook and Instagram, what are the key empirical facts that govern these potential effects?

Quantitatively, how might separating Facebook and Instagram affect market outcomes and welfare?

We begin with a model of digital media as a two-sided market. While the model nicely applies

to the Facebook-Instagram case, it is generally useful for understanding platform competition with

targeted advertising. Heterogeneous users and advertisers continuously allocate their time and ad

spending between two platforms (e.g., Facebook and Instagram) and non-strategic outside options.

The platforms set advertising load, accounting for how higher ad load decreases both user time on

platform and equilibrium ad prices. Ad markets clear at the user level, with user-specific prices.

The model includes familiar forces from the two-sided market literature (e.g., Rochet and Tirole

2003; Anderson and Coate 2005; Rysman 2009). When the two platforms are managed jointly, the

monopolist internalizes how ad load affects prices but not how ads reduce user surplus, so profit-

maximizing ad load can be either above or below the social optimum depending on users’ ad aversion

and advertisers’ demand elasticity. When the two platforms are separated, they compete for both

users and advertisers, so ad loads can increase or decrease depending on which side of the market

is more competitive. The magnitude of the separation effect depends on the share of users that

“multi-home” (i.e., use both platforms) and how much they use each platform.

When users and advertisers both multi-home, separating the platforms can cause “inefficient

duplication”: if advertising has diminishing returns but the separated platforms can’t coordinate ad

targeting, they may inefficiently impress the same user with duplicate ads from a given advertiser,
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resulting in lower ad click-through rates. A series of recent papers have emphasized the importance

of inefficient duplication in ad markets (Anderson et al. 2012; Ambrus, Calvano, and Reisinger

2016; Anderson, Foros, and Kind 2018; Athey, Calvano, and Gans 2018; Gentzkow et al. 2024). In

our model, when the two platforms separate, there is a “business stealing” incentive for platforms

to reduce inefficient duplication by expanding ad load to target lower-value users the other platform

is less likely to target. While separated platforms’ ad load choices would otherwise be strategic

substitutes, business stealing can make ad load strategic complements.

The model highlights that merging or separating digital platforms such as Facebook and Insta-

gram has theoretically ambiguous effects on equilibrium ad load and total surplus. However, these

effects depend on a specific set of empirical parameters: user overlap and time use distributions,

the user-side diversion ratio, users’ demand slope and ad aversion, the extent of diminishing returns

to duplicate impressions, and advertisers’ price elasticity. In the rest of the paper, we focus on the

Facebook-Instagram case, presenting empirical evidence on the key parameters that we then use to

estimate the model and carry out counterfactual simulations to resolve the theoretical ambiguities.

We collect the empirical evidence from a rich array of new and existing sources, mostly focused

on 2020, the year the FTC filed its lawsuit. First, nationally representative survey data from

the 2020 National Public Opinion Reference Survey (Pew Research Center 2020) show that adult

Instagram users were more likely to use Facebook than vice-versa. In our model, Instagram’s higher

share of multi-homers means that separation would have larger effects on Instagram’s ad load and

prices.

We then report diversion ratios that we construct using earlier results from the 2020 Facebook

and Instagram Election Study (“FIES”) (Allcott et al. 2024, 2025; Allcott, Kiefer, and Tangkit-

vanich 2025). FIES included two randomized experiments with nationally representative samples

of Facebook and Instagram users, in which randomly selected treatment groups were paid to de-

activate their accounts for six weeks. A subset of participants agreed to install software to record

their smartphone time use.

If the FTC’s “personal social networking” market definition were correct, users would primarily

substitute between Facebook, Instagram, and Snapchat. In reality, the estimated diversion ratio

from Facebook to Instagram is a precisely estimated 0.054, and the estimated diversion ratio from

Instagram to Facebook is statistically zero, although the confidence interval admits a diversion ratio

as large as 0.29. Strikingly, users substitute more to web browsers and other non-social media apps

than to social media apps such as Snapchat, Twitter, and YouTube, although there is statistically

significant substitution from Instagram to TikTok.

We then reanalyze data from the Digital Addiction (“DA”) experiment implemented by Allcott,

Gentzkow, and Song (2022). DA was a randomized experiment with Facebook and Instagram users

in which a randomly selected treatment group was paid to reduce time spent on (but not necessarily

deactivate) Facebook, Instagram, and other social media apps for three weeks. The DA results

imply that time use is very price elastic: about 40 percent of Facebook and Instagram use is worth

less than $2.50 per hour to users. In our model, this means that any ad load increases would cause
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relatively small consumer surplus losses.

We also import the Brynjolfsson et al. (2024) estimate that on average, users’ time on platform

is very inelastic to ad load. In our model, this inelasticity and the limited diversion between

Facebook and Instagram imply that separation would not generate much additional incentive to

reduce ad load to attract users. Instead, separation would induce the platforms to compete harder

for advertisers, by increasing ad load and thus reducing ad prices.

Finally, to measure advertiser-side diminishing returns, we ran a new experiment with Facebook

and Instagram ads to estimate the effect of duplicated ad campaigns on ad click-through rates.

We generated 120 separate user audiences averaging about 1,300 users each and targeted them

with week-long ad campaigns for 15 popular products. We randomized whether the audiences

were targeted with either one or two identical campaigns. Click-through rates on the duplicated

campaigns averaged 28 percent lower than on the non-duplicated campaigns. In our model, this

means that separation without coordinated ad delivery could generate a material “business stealing”

incentive to increase ad load, and that duplication could cause meaningful inefficiencies.

We use these empirical moments to estimate the model’s structural parameters. We impose

a quadratic functional form on users’ utility from time on the two platforms, and we identify

the ad disutility, price responses, platform substitution, and distribution of utility intercepts from

the observed ad and price elasticities, diversion ratios, and time use distribution. We identify

advertisers’ aggregate price elasticity from the platform’s first-order condition, in the spirit of

how Berry, Levinsohn, and Pakes (1995) identify marginal costs from a Nash-Bertrand pricing

assumption. Drawing intuition from the inverse elasticity markup rule, because user time is not

very elastic to ads, Meta has a low marginal opportunity cost of ad load, and it thus sets ad load

on a less elastic place on its advertising demand curve.

We use the estimated model to simulate the effects of separating Facebook and Instagram.

Driven by the empirical results that the user diversion ratio is low and user time is relatively

inelastic to ads, the model predicts that separation would induce more competition for advertisers

than for users. This would increase ad load, reducing ad prices. Since a larger share of Instagram

users are multi-homers, separation increases modeled ad load more on Instagram.

The modeled effects of separation depend substantially on inefficient duplication. In a scenario

where the separated platforms independently set ad load but can coordinate ad delivery to avoid

duplication, advertiser surplus would increase by 11 percent. In an alternative scenario where

the platforms can’t avoid duplication and predict the same user-specific click-through rates, the

“business stealing” effect drives ad load higher and ad prices lower. Advertiser surplus would

increase by 15 percent, but duplication loss generates substantial inefficiency. In either scenario,

user surplus decreases slightly as ad load increases, the platforms’ profits decrease as ad prices

drop, and total surplus decreases slightly as ad load moves away from the social optimum. In

either scenario, the sum of user and advertiser surplus decreases slightly. Thus, in our model, the

FTC’s proposed separation remedy is not beneficial—it just transfers surplus from Meta and its

users to advertisers while introducing inefficient duplication.

4



Strikingly, the total surplus generated by Facebook and Instagram changes by at most about

one percent across all modeled scenarios, because total surplus is dominated by consumer surplus,

which changes little with ad load. The importance of consumer surplus is consistent with findings

from Brynjolfsson, Collis, and Eggers (2019) and Allcott, Braghieri, Eichmeyer, and Gentzkow

(2020) that users are willing to pay considerable amounts to continue using the platforms.

There are several important caveats. First, we consider only one margin through which com-

petition affects welfare: equilibrium ad loads and prices in an otherwise static market. The FTC

(2021), Scott Morton and Dinielli (2020), and others point to important additional potential effects

of digital media mergers and separations, including entry of competing social media platforms and

the existing platforms’ incentives to improve user experience and privacy practices. Second, other

than coordinated ad targeting, we do not consider other merger-specific efficiencies, such as sharing

features and ad systems across platforms. If Instagram were separated without access to Meta’s

targeting and attribution technologies, ad targeting would likely become much worse, harming

both users and advertisers. Third, we do not model any harms to users from social media addic-

tion (Allcott, Gentzkow, and Song 2022). If separation increases ad load, the decreased time use

would presumably reduce such harms. Fourth, even within the context of our model, our empirical

calibrations are imperfect. For example, our user diversion ratios are identified from only six weeks

of deactivation, although we discuss several reasons why diversion ratios might not be that much

different over a longer period. As another example, our estimate of advertisers’ price elasticity from

the platform’s first order condition depends on our structural assumptions.

Our work builds on several important literatures. First, we extend theoretical literatures on

platform competition in general (e.g., Rochet and Tirole 2003, 2006; Rysman 2009; Armstrong

2006; Weyl 2010) and specifically in media markets (e.g., Anderson and Coate 2005; Bergemann

and Bonatti 2011; Anderson and De Palma 2012; Prat and Valletti 2022; Anderson and Peitz 2023;

Chen 2024). Second, we extend research focusing on the effects of multi-homing in advertising

markets, including duplication and incremental pricing (e.g., Ambrus, Calvano, and Reisinger 2016;

Anderson, Foros, and Kind 2018; Athey, Calvano, and Gans 2018; Zubanov 2021; Gentzkow et al.

2024). Third, we build on other work studying media industry mergers and separations (e.g.,

Berry and Waldfogel 2001; Chandra and Collard-Wexler 2009; Fan 2013; Gentzkow, Shapiro, and

Sinkinson 2014; Jeziorski 2014; Benzell and Collis 2022). Fourth, the FIES experiment we leverage

is related to other work on estimating diversion ratios from product availability experiments in

social media (Aridor 2025) and other markets (Goldfarb 2006; Conlon and Mortimer 2013, 2021;

Conlon, Mortimer, and Sarkis 2021).

Our primary contribution is to develop an empirically tractable model of digital media mergers

or separations and apply it to a policy-relevant context with a compelling array of data. Our

model’s key forces are consistent with earlier theoretical work, including Anderson and Coate

(2005), Ambrus, Calvano, and Reisinger (2016), Athey, Calvano, and Gans (2018), and others

mentioned above. However, advertising market models with multi-homing consumers can easily lose

tractability, so prior work has made assumptions that may be undesirable in some applications,
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such as no user substitution between platforms (e.g., Ambrus, Calvano, and Reisinger 2016) or

effectively homogeneous time use within a platform (e.g., Anderson, Foros, and Kind 2018; Athey,

Calvano, and Gans 2018). In Athey, Calvano, and Gans (2018), the model delivers results such

as discontinuous reaction functions and mixed strategy equilibria that are hard to map to realistic

market conditions. In contrast, our model is explicitly designed to be empirically implemented,

accommodating empirically realistic estimates of user heterogeneity, substitution patterns, and

other parameters in computationally tractable pure strategy equilibria.

We also provide a new empirical estimate of the return to duplicate ad campaigns. Despite

the important role of inefficient duplication in ad market models, to our knowledge there are no

direct experimental estimates in the literature. Gentzkow, Shapiro, and Sinkinson (2014) identify

diminishing returns in a structural model in a historical newspaper context. Lewis (2010), John-

son, Lewis, and Reiley (2016), and Meta (2016) estimate the effect of ad campaign frequency on

performance. Our experiment is designed to identify a related but different parameter, which is

the return to duplicating ad campaigns with standard frequencies.

Sections 1–6, respectively, present the model, experimental designs, model-free empirical evi-

dence, structural estimation, counterfactual simulations, and conclusion.

1 Model

1.1 Setup

There are two digital media platforms indexed by j. The platforms choose ad load αj (in ads per unit

time on platform) to maximize profits. Bold typeface indicates vectors—e.g., α is the vector of ad

loads on each platform. Platform j’s profit is ad revenue minus ad cost: Πj (αj) = Rj (α) − αjcj .

Marginal costs cj could represent the actual incremental cost of serving more ads (for example,

customer service for advertisers), dynamic incentives to restrict ad load (for example, to gain

market share and benefit from network effects), and in our structural estimation, any other reasons

why the platforms’ theoretical first-order conditions don’t otherwise match the data.1

There are N total users indexed by i. Users choose time on each platform Tij and numeraire

consumption ni to maximize utility Ui (T i, ni;α). We assume that Ui is quasilinear in ni, so changes

in Ui correspond to changes in consumer surplus. We assume that users’ utility or disutility from

ad load accounts for expected consumer surplus from any purchases of advertised products, so we

do not need to separately account for consumer surplus in advertisers’ product markets. We let

Tij (α) denote utility-maximizing time use as a function of ad load. There are two user types:

“single-homers” on platform j exogenously have Ti,−j(α) ≡ 0, while “multi-homers” may have

positive use on both platforms.

There are A advertisers indexed by a. Ad clicks generate value πa for advertisers. For example,

1This reduced-form approach to representing dynamic incentives in a static model is similar to Wollmann (2018),
who analyzes investment decisions based on hurdle rates in a model of static Bertrand-Nash competition. Our theory
also can capture network effects through the effect of ad load on users’ time on platform.
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πa might equal a product’s markup times users’ purchase probability after clicking on an ad. The

model is isomorphic if we redefine “clicks” as some other advertising result (such as impressions or

purchases) or redefine “advertisers” as independent ad campaigns run by the same firm. Advertisers

choose the quantity of clicks qa to purchase from the platforms to maximize profits Πa (qa).

The targeted advertising technology is as follows. An ad “campaign” involves m impressions of

advertiser a’s ads to each targeted user, where m is the platform’s assessment of the optimal number

of impressions per user.2 Define ωia as platform’s prediction of user i’s probability of clicking on

each ad impression during advertiser a’s first ad campaign, which we call the “click-through rate”

(CTR). We assume that both platforms have the same targeting technology (even if separated), so

ωia is the same on both platforms. (We relax that assumption in Appendix A.3.) The click-through

rate after the first campaign is (1 − ζi) · ωia, where ζi captures diminishing returns to additional

impressions.

As described below, there is a separate ad market for each user, with equilibrium price per

impression pi. The predicted cost per click is thus pi/ωia, and the predicted value per impression

is thus ωiaπa for the first campaign and (1 − ζi) · ωiaπa for any subsequent campaign. For user i,

define Hi (x) ∈ [0, 1] as the cumulative density function (CDF) of ωiaπa across advertisers.

The platform’s contract offer to advertisers is to serve ads to the Ua (q) users with the lowest

predicted cost per click and charge the cost Ca (q) =
∑

i∈Ua(q)
m · pi. Advertisers know Ca (q) when

choosing q.

We impose three assumptions that substantially simplify the analysis.

Assumption 1. Independent click-through rates: ωia⊥ωia′, ∀ (a, a′); ωia⊥Tij (α) ,∀ (a, j);

and ωia ⊥ ζi,∀a.

Assumption 2. Identical uniform values per impression: Hi (x) = H (x) = x
η − η0, ∀i.

Assumption 3. Bounded profits per impression: (1 − ζi) · η · (1 + η0) ≤ pmi , ∀i, where pmi is

the merged equilibrium price when platforms are constrained to serve at most one campaign to user

i from advertiser a.

Assumption 1 states that click-through rates are independent across advertisers and independent

of both time on platform and diminishing returns. This rules out the possibility that some users

are more or less valuable on average across advertisers. This assumption could be weakened by

modeling distinct user types, such as high- or low-income people. Assumptions 1 and 2 together

imply that a given change in α has the same effect on all Ca (q), and Assumption 2 facilitates

straightforward demand aggregation across individual users.

Assumption 3 implies that predicted value per impression for the second campaign is weakly

below the market clearing price if the merged platform never showed duplicated impressions, since η·
2Assuming the same m for all users is isomorphic to assuming heterogeneous impressions mi with mi ⊥ ωiaπa,

∀ (i, a), and m ≡ Ei[mi]. We also show in Appendix A.1 that equilibrium prices are identical with heterogeneous
mi and an alternative assumption where mi is increasing in profits per impression and decreasing in prices, with a
specific functional form.
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(1 + η0) is the maximum value per impression given Assumption 2. Thus, in the merged equilibrium,

the platform never shows a given campaign to a user a second time, since it is weakly more profitable

to show the first campaign from the marginal advertiser.

1.2 Merged and Separated Equilibria

We now describe two equilibria. In the “merged equilibrium,” the two platforms set ad load to

maximize joint profits, and advertisers buy ads from the one merged entity. In this equilibrium, the

platforms have “coordinated ad delivery,” meaning that each user’s available ad slots are allocated

optimally across both platforms, and there is thus one ad price pi for each user. In the “sepa-

rated equilibrium,” the two platforms independently set ad load to maximize their own profits,

and advertisers buy ads separately from each platform. We compare two types of separated equi-

libria: with “uncoordinated ad delivery,” meaning that each user’s available ad slots are allocated

optimally within each platform but not necessarily across platforms, and coordinated ad delivery.

Uncoordinated delivery can lead to different ad prices pij as well as inefficient duplication, where

both platforms target the same ad campaign at the same user.

1.2.1 Merged Equilibrium

Advertisers choose the quantity of clicks to purchase from the merged firm. Advertiser profits equal

the value of clicks net of advertising costs:

Πm
a (q) = πa · q − Ca (q) . (1)

Maximizing profits gives

πa = C ′
a (qa) (2)

In words, advertisers purchase ads until the marginal cost per click equals the value per click.

Ad markets clear at the user level:

supply︷ ︸︸ ︷
α · T i(α) =

demand︷ ︸︸ ︷∑
a

m · 1 [i ∈ Ua (qa)] =
∑
a

m · 1 [pi ≤ πaωia] = Am · (1 −Hi (pi)) . (3)

Rearranging equation (3) and substituting the functional form for Hi (x) from Assumption 2 gives

equilibrium price

pi = η ·
(

1 + η0 −
α · T i(α)

Am

)
. (4)

This equation shows that equilibrium prices are increasing in ad demand (the number of advertisers

A and campaign size m) and decreasing in ad supply (ad load α and time on platform T i). We

assume that η and η0 are such that we always have an interior equilibrium.

8



1.2.2 Separated Equilibrium

In the separated equilibrium, advertisers choose the number of clicks qj to purchase from each of the

two platforms. With uncoordinated ad delivery, each platform’s ability to deliver qj clicks depends

on the number of impressions that are duplicated on the other platform. Many duplicated clicks

and more strongly diminishing returns means that a platform will get fewer clicks per impression.

Define Oa (q1, q2) as the “duplication function”: the number of duplicated clicks purchased, as a

(weakly increasing) function of the number of clicks purchased on each platform. Now, qj clicks

cost Caj(qj ;Oa(q)), and advertiser profits are

Πs
a (q1, q2) = πa · (q1 + q2) −

∑
j

Caj (qj ;Oa (q)) . (5)

To derive advertisers’ first-order condition, define i∗ as the marginal user impressed by advertiser

a on platform j. Further define “marginal duplication” O′
aj as the derivative of Oa with respect to

qj . This is the probability that the impression on user i∗ is duplicated on the other platform. Then

define C̃ ′
aj = pi∗a/ωi∗a as the expected cost per click for a hypothetical unduplicated impression

on the marginal user. Finally, define ζj as the time-use weighed average of ζi on platform j for

multi-homing users. (ζj depends on α, but we suppress that notation.)

With probability O′
aj , the impression on the marginal user i∗ is duplicated, and the predicted

click-through rate is (1 − ζj) ·ωi∗a.3 With probability
(

1 −O′
aj

)
, the impression is not duplicated.

Thus, the expected marginal CTR is O′
aj · (1 − ζj) · ωi∗a +

(
1 −O′

aj

)
· ωi∗a =

(
1 − ζjO

′
aj

)
· ωi∗a,

and the expected marginal cost per click is C̃ ′
aj (qj) /

(
1 − ζjO

′
aj

)
.

Using this result, maximizing profits gives

πa = C ′
aj (qaj ;Oa(q)) =

C̃ ′
aj (qj)

1 − ζjO′
aj

. (6)

In words, advertisers purchase ads until the duplication-adjusted marginal cost per click equals the

value per click. As marginal duplication O′ increases, platforms must deliver more ad impressions

for each click, raising advertising costs.

With uncoordinated ad delivery, the user-level market clearing condition is analogous to the

merged case, except that markets now clear separately on each platform j:

supply︷ ︸︸ ︷
αj · Tij (α) =

demand︷ ︸︸ ︷∑
a

m · 1
[
pij ≤ πaωia ·

(
1 − ζj ·O′

aj

)]
= Am ·

(
1 −Hi

(
pij

1 − ζjO′
aj

))
. (7)

Rearranging equation (7) and again substituting the functional form for Hi (x) gives equilibrium

3The marginal CTR can be multiplied ζj by rather than ζi∗ because ζi ⊥ ωia, per Assumption 1.
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price

pij = η ·
(

1 + η0 −
αjTij (α)

Am

)
·
(
1 − ζjO

′
aj

)
. (8)

This equation shows that equilibrium prices are discounted by the expected “duplication loss”

ζjO
′
aj .

Let Uj be the set of users on platform j, and Nj = |Uj | indicate their number. We show in

Appendix A.2 that the marginal duplication function evaluated at equilibrium ad demand is

O′
aj =

∑
i∈Uj

1 [αjTij (α) ≤ α−jTi,−j (α)]

Nj
∈ [0, 1]. (9)

This equation shows that marginal duplication depends on several forces. First, marginal du-

plication decreases as time use decreases on platform −j relative to j. In the extreme where

Ti,−j (α) = 0, meaning that all of j’s users are single-homers, the indicator in the numerator is

always zero. Second, holding constant multi-homers’ average time use, marginal duplication de-

creases as the covariance between Tij and Ti,−j decreases. Intuitively, if time use and other factors

are homogeneous across platforms, then all users would see duplicated impressions in equilibrium,

but duplication decreases if users heterogeneously spend more of their time on either j or −j.

Third, marginal duplication decreases as platform j increases ad load relative to −j. Intuitively,

as platform j increases ad slots, it increasingly serves ads to marginal users who are not valuable

enough to be impressed on the other platform.

With coordinated ad delivery, the ad market clears jointly across the two platforms. Thus,

the ad market clearing condition and equation for price pi are as written earlier for the merged

equilibrium.

1.3 Equilibrium Ad Load

We now solve for ad load in the social optimum, merged equilibrium, and separated equilibrium.

Derivations are in Appendix A.

1.3.1 Social Optimum

The social planner maximizes the sum of consumer, advertiser, and platform surplus. The social

planner uses competitive equilibrium prices for allocating ad load because the platform’s contract

allocates ads to highest-value advertisers. Platform revenue cancels because it is a transfer from

advertisers to the platform, giving

W =
∑
i

U∗
i (T (α) , n;α) +

∑
i

Am ·
(πω)maxˆ

x=pi(α)

xdH (x) −α · c. (10)

The first-order condition for ad load equates marginal consumer surplus losses with marginal ad-

vertiser benefits net of cj . Solving for socially optimal ad load gives
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αo
j =

∑
i

[
∂U∗

i (·;α)
∂αj

+ pi(α) ·
(
Tij(α) + αo

−j
∂Ti,−j(α)

∂αj

)]
− cj

−
∑

i pi(α) · ∂Tij(α)
∂αj

. (11)

The first term in the numerator (∂U
∗

∂α ) is negative, capturing that socially optimal ad load is

lower when users dislike ads more. The remaining terms other than cj capture the marginal benefit

of ad load to advertisers. This marginal benefit equals the equilibrium ad price pi (which depends

on values per click πa and captures advertisers’ marginal value of impressions) times several terms

capturing the change in the quantity of ad slots. The term Tij captures the mechanical effect that

when user time on platform is higher, more ad load per unit time generates more ad slots. The final

term in the numerator captures how ad load on platform j affects user time (and thus ad slots)

on the other platform, depending on whether the platforms are substitutes for users (implying
∂T−j

∂αj
> 0) or complements (implying

∂T−j

∂αj
< 0). The denominator, which is positive, captures how

socially optimal ad load is lower when
∂Tj

∂αj
is larger, i.e. when higher ad load causes more decrease

in time on platform (and thus ad slots).

A corner solution is also possible, i.e. socially optimal ad load can be zero. This happens if

the consumer surplus loss from the first ad is higher than the advertiser value for that ad, i.e. if∑
i
∂U∗

i (·;0)
∂αj

>
∑

i pi(0) · Tij(0).

1.3.2 Merged Equilibrium

The merged firm maximizes profit

Πm (α) =
∑
i

ad supply︷ ︸︸ ︷
α · T i (α) ·pi −α · c. (12)

The first-order condition for ad load equates the marginal revenue loss from lower ad prices on all

slots sold with the marginal net revenue gain from offering additional slots. Solving for revenue-

maximizing ad load gives

αm
j =

∑
i

[
∂pi
∂αj

·α · T i (α) + pi (α) ·
(
Tij (α) + αm

−j ·
∂Ti,−j(α)

∂αj

)]
− cj

−
∑

i pi (α) · ∂Tij(α)
∂αj

. (13)

The first term in the numerator is negative, capturing that revenue-maximizing ad load is lower

when advertisers are more price responsive. The remaining terms are the same as in equation (11).

This is because of advertisers’ optimization from equation (2), which equates their marginal benefit

from ads (which the social planner considers) with their willingness to pay for those ads (which the

platform considers).

Comparing the first terms in the numerators of equations (11) and (13) shows the distortion

in the merged equilibrium relative to the social optimum: socially optimal ad load will exceed the

merged equilibrium level if
∑

i
∂U∗

i (·;α)
∂αj

≥
∑

i
∂pi
∂αj

·α ·T i (α). As highlighted in Anderson and Coate
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(2005), the social planner restricts ad load to avoid consumer harm, while the platform restricts ad

load to increase ad prices. To see this more clearly, define γij > 0 as the marginal disutility from

an additional ad, and temporarily assume ∂T i/∂α = 0 to isolate the most relevant forces in our

empirical application. Then socially optimal ad load exceeds the merged equilibrium level if

∑
i

γijTij ≤
∑
i

Tij ·
( η

Am
α · T i

)
. (14)

Socially optimal ad load will be relatively higher if the ad disutility γj is small. Merged equilibrium

ad load will be relatively higher if time use T i is small, because higher ad load reduces prices on

a smaller number of inframarginal impressions. Holding average time use fixed, relative merged

equilibrium ad load decreases with time use variance, because platform profits depend more heavily

on ad prices for heavy users, whose ad prices are more sensitive to changes in ad load.

1.3.3 Separated Equilibrium

The separated platforms maximize profit

Πs
j (αj) =

∑
i

ad supply︷ ︸︸ ︷
αj · Tij (α) ·pij − αjcj . (15)

Solving for revenue-maximizing ad load gives

αs
j =

∑
i∈Uj

[
∂pij
∂αj

· αj · Tij(α) + pij(α) · Tij(α)
]
− cj

−
∑

i∈Uj
pij(α) · ∂Tij(α)

∂αj

. (16)

Comparing this to equation (13) shows that the merged platforms internalize two effects that

the separated platforms ignore. The difference between the first terms in the numerators shows

that the merged platforms internalize how ad load affects ad prices on the other platform. Since

higher ad load decreases prices, this effect reduces ad load in the merged equilibrium relative to

the separated equilibrium. We call this the “advertiser-side Cournot effect.” The last term in

the numerator of equation (13) is not present in equation (16), showing that the merged platforms

internalize how ad load affects time spent (and thus ad slots) on the other platform. If the platforms

are substitutes (
∂T−j

∂αj
> 0), this effect increases ad load in the merged equilibrium. If the platforms

are complements (
∂T−j

∂αj
< 0), this effect reduces ad load in the merged equilibrium. We call this

the “user-side substitution effect.”

These two effects are familiar from the early two-sided markets literature (e.g., Rochet and

Tirole 2003; Anderson and Coate 2005; Rysman 2009). However, in our model with user preference

heterogeneity, the magnitudes of these effects are governed by the amount of user overlap. If all

users are single-homers, then the merged and separated equilibria are the same: changes in platform

j’s ad load don’t affect ad prices or time use for any of the other platform’s users. All else equal, the

more multi-homers there are, the more different the two equilibria become. Multi-homers’ average

12



time on platform also matters. The first term in the numerator of equation (13) shows that even

if there are many multi-homers, higher ad load on platform j doesn’t affect platform −j’s revenue

much if multi-homers’ Ti,−j is small.

Moreover, equilibrium ad load depends on the full time use distribution, not just the mean.

Both terms in the numerator of equation (16) include products of time on platform Tij with price,

which also depends on Tij . Thus, holding constant the average Tij , an increase in the variance of

Tij will also affect the equilibrium.

Coordinated versus uncoordinated ad delivery. The differences between the merged and

separated equilibria described so far apply with either coordinated or uncoordinated ad delivery.

With coordinated ad delivery, equations (15) and (16) would just have one user-specific ad price pi

instead of pij . See Appendix Section A.6.3 for details.

With uncoordinated ad delivery, duplication loss affects the ad price pij and its derivative
∂pij
∂αj

.

Equation (8) showed that pij is discounted by the expected duplication loss ζjO
′
aj . To most clearly

see the effects on
∂pij
∂αj

, we differentiate equation (8) while momentarily assuming ∂ζj/∂α ≈ 0, giving

∂pij
∂αj

≈ −
(
1 − ζjO

′
aj

)
·
η ·
(
Tij + αj

∂Tij(α)
∂αj

)
Am

− pijζj(
1 − ζjO′

aj

) ∂O′
aj

∂αj
. (17)

The first term shows how increasing ad load reduces price by increasing the number of ad slots,

both directly and indirectly by changing user time on platform. This force also exists in the merged

equilibrium. Like the prices pij , this term is also discounted by the expected duplication loss ζjO
′
aj .

The second term is specific to the separated equilibrium with uncoordinated ad delivery. As

described in Section 1.2.2, marginal duplication is decreasing in ad load (i.e.,
∂O′

aj

∂αj
< 0), as the

additional ad slots increasingly serve ads to marginal users who are not impressed on the other

platform. In equilibrium, this lower duplication probability reduces the cost per click, depending

on the magnitude of diminishing returns ζj . This provides an additional incentive for the separated

platforms to increase ad load. We call this the “business stealing effect.”

Both terms show that duplication loss lowers the opportunity cost of higher ad load, the first

by reducing return to duplicated ads, and the second by allowing higher ad load to directly reduce

duplication loss. These forces are related to the “business sharing” effect in Ambrus, Calvano,

and Reisinger (2016) in that they increase ad load in the separated equilibrium. Our two forces

are not separately present in Ambrus, Calvano, and Reisinger (2016), principally because our

model is tailored to institutional features of targeted ad markets with user-level ad prices. In our

model, the payoff from higher ad load depends on marginal duplication, which itself depends on ad

load. In Ambrus, Calvano, and Reisinger (2016), the payoff from higher ad load depends only on

average duplication, since marginal impressions are implicitly randomly shown across users.4 For

similar reasons, our model’s forces are distinct from the version of “business stealing” present in

4Ambrus, Calvano, and Reisinger (2016) also analyze joint versus separated ownership of two platforms. That
analysis is again related, but non-nested, with ours. They consider the case where both the merged and separated
equilibrium feature duplication loss, whereas we always assume no duplication loss in the merged equilibrium.
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the Athey, Calvano, and Gans 2018 model of one-sided media market competition with duplication

loss, where platforms increase ad load to increase the single-homer share of advertisers who have

higher incremental value to platforms.5

The extent of diminishing returns ζj matters for several reasons. First, it affects the equilibrium

α by governing the magnitude of the business stealing effect. Second, it governs the welfare effects

of separation by mechanically determining the loss from duplicated impressions.

1.3.4 Discussion

In reality, Meta and other digital media platforms can set user-specific ad load (Hemphill 2025).

The model applies directly to that case, with the profit-maximizing ad loads derived above holding

for each user or user type.

In deriving marginal duplication in equation (9), we assume that both platforms predict the

same click-through rate ωia for each user. In practice, the two platforms might predict different

ωia, perhaps using different data or targeting systems. This would reduce average duplication Oa.

However, Appendix A.3 shows that marginal duplication could either increase or decrease with

different predicted ωia, and thus the change in separated equilibrium ad load is ambiguous.

In Appendix A.4, we show that in the separated equilibrium, the platforms’ optimal ad loads

can be strategic substitutes or strategic complements, depending on the strength of two forces.

First, advertisers view ad slots on each platform as substitutes, so platforms reduce ad load in

response to an increase by their rival. This is a standard Cournot game force that in isolation

would make ad load choices strategic substitutes. The strength of this force depends on user

overlap: a platform responds more to its rival’s actions when more users multi-home and thus can

be reached by advertisers on the other platform.

Second, as described above, with uncoordinated ad delivery there is a business stealing incentive

to increase ad load. This force allows for strategic complementarity in ad load, as shown formally

in Proposition 1 in Appendix A.4. Intuitively, an increase in a platform’s ad load reduces the rival

platform’s advertising demand by increasing the average duplication probability. Depending on the

time use distribution, this may reduce the rival platform’s marginal duplication probability, which

would increase the rival’s optimal ad load.6

The equations above show how ad load in the merged equilibrium could be larger or smaller than

the social optimum, and that separating the platforms could move ad load either closer to or further

from the social optimum. The relationships between these equilibria are governed by a specific set

5Athey, Calvano, and Gans 2018 implicitly refer to this force as a form of entry deterrence, rather than “entry
accommodation,” in the market for single-homing advertisers.

6The version of “business stealing” in the Athey, Calvano, and Gans (2018) model of one-sided media market
competition with duplication loss also implies scope for strategic complementarity, as shown in their Figure 2. As
described in the previous section, the reason for strategic complementarity is slightly different due to our focus on
targeted ads. We build on their work by putting a similar effect in a two-sided market model of targeted ads and
allowing for heterogeneous time use conditional on homing status. Unlike Athey, Calvano, and Gans (2018), our
model’s heterogeneous time use gives continuous reaction functions that (i) allow us to more clearly characterize
duplication loss as a force that can lead to strategic complementarity or non-monotonic reaction functions and (ii)
can be more realistically taken to data.

14



of parameters: user overlap, the mean and distribution of time on platform, user-side diversion

ratios, users’ disutility from ads, the extent of diminishing returns to duplicate impressions, and

advertisers’ price elasticity. In the rest of the paper, we estimate these parameters and then use

the estimated model to evaluate counterfactuals.

2 Experimental Designs

Section 1 described how a set of parameters govern the effects of merging or separating digital

platforms. In this section, we present experimental designs and data for a survey and several

randomized experiments that we use to estimate these parameters.

2.1 National Public Opinion Reference Survey

To estimate user overlap between Facebook and Instagram, we use microdata from the National

Public Opinion Reference Survey (Pew Research Center 2020), henceforth the “NPORS.” It is

particularly important to measure app use overlap in a nationally representative sample instead of

an online opt-in sample, because the latter might naturally be selected on internet use. NPORS

overcomes this potential issue because it is a high-quality probability sample, where potential

respondents are randomly selected from the U.S. adult population using address-based sampling

and can respond on paper, online, or over the phone. The survey question we use asks, “Please

indicate whether or not you ever use the following websites or apps,” with a list of possible responses

including Facebook, Instagram, and six other apps.

To correspond to the timing of the experiments described below, we use the 2020 survey, which

has 3,607 valid responses to the question we use. We use the study’s nationally representative

sample weights.

2.2 Facebook and Instagram Election Study

To estimate diversion ratios and the joint distribution on time on platform, we use results from

the U.S. 2020 Facebook and Instagram Election Study, henceforth the “FIES.” The microdata

can only be used to study the role of social media in elections, so we did not use the microdata

for this paper. Instead, we adapt results reported in a replication study by Allcott, Kiefer, and

Tangkitvanich (2025), which are similar to results from Allcott et al. (2024) and Allcott et al.

(2025).

The FIES included two parallel randomized experiments, one that paid Facebook users to

deactivate Facebook, and another that paid Instagram users to deactivate Instagram. We say that

Facebook and Instagram, respectively, are the “focal platform” in each experiment. To recruit

participants, Meta placed survey invitations at the top of the news feeds for stratified random

samples of Facebook and Instagram users. Participants were also invited to an optional “passive

tracking sample” in which mobile app use would be recorded.
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A randomly selected Control group was offered $25 if they did not log into their focal platform

for the one week between September 23 and the end of the day on September 29, 2020. A randomly

selected Deactivation group was offered $150 if they did not log into their focal platform for the

six weeks between September 23 and the end of the day on November 3, the day of the election.

The “treatment period” is the additional five weeks from September 30 to November 3 when the

Deactivation group was being paid to avoid logging in, while the Control group was not.

The app use analyses in Allcott, Kiefer, and Tangkitvanich (2025) include the 3,729 Facebook

users and 2,700 Instagram users who consented to passive tracking and have valid app use data. The

FIES data include weights that make the sample representative of Facebook and Instagram users

on a set of variables including baseline focal app use measured in Meta’s internal data. Allcott,

Kiefer, and Tangkitvanich (2025) then adjust those weights so that the reweighted passive tracking

samples match the NPORS on the share of users that are multi-homers.

2.3 Digital Addiction Experiment

To estimate the price elasticity of time on platform, we use microdata from the Digital Addiction

experiment (Allcott, Gentzkow, and Song 2022), henceforth “DA.” Participants were recruited using

Facebook and Instagram ads. All participants consented to have their mobile app use recorded.

Baseline data were collected during a 20-day “baseline period” from April 13 through May 2, 2020.

A randomly selected “Bonus group” was offered a “Screen Time Bonus” to reduce their use of

five social media apps (Facebook, Instagram, Twitter, Snapchat, and YouTube) plus web browsers

during a 20-day “bonus period” from May 25 through June 13. The structure of the bonus was

essentially equivalent to a price of $2.50 per hour for using those apps during the 20-day period.

We analyze the 783 participants in the Bonus and Control groups who were not randomly

selected to receive additional experimental screen time limit functionality. From that group, we

construct two partially overlapping samples of 670 “Facebook users” and 541 “Instagram users,”

who ever used the respective mobile app before the bonus period began on May 25. We do not

construct sample weights for this analysis.

2.4 Ad Duplication Experiment

To estimate how duplicated social media ad impressions affect click-through rates due to dimin-

ishing returns, we ran a new experiment on Facebook and Instagram. An ideal experiment would

randomly vary, for a representative sample of users and ad campaigns, whether users are exposed

to a campaign once or twice. We cannot implement this exact experiment from outside Meta,

but we used Meta’s Ads Manager functionalities to approximate it quite closely, by targeting user

audiences with either single or duplicated ad campaigns.

In our experiment, we served ads for 15 popular products across five popular categories. To

choose the categories, we began with the top six categories for digital ad spending from the Sensor-

Tower (2024) Digital Market Index: shopping, consumer packaged goods, media and entertainment,
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health and wellness, food and dining, and financial services. We excluded the latter category be-

cause Meta restricts financial services ads, giving five product categories. Within each category,

we used online sources to identify three major advertisers along with each advertiser’s most popu-

lar product. For consumer packaged goods, for example, the products were Tide Pods, Dove Deep

Moisture body wash, and Nescafe Clasico coffee. We created a new Facebook page for each category

that ran ads recommending the top three products as our “product picks.”7

For each of the 15 products, we ran eight initial ad campaigns for a different product in the

same category from February 4 to 11, 2025. The users Meta targeted for these initial campaigns

gave us eight similarly sized, non-overlapping audiences per product. We then randomly assigned

each audience to be re-targeted by a follow-up campaign in one of eight treatment conditions from

a 2x2x2 matrix, varying (i) the number of campaigns (one or two) targeting the audience; (ii) the

daily budget (high or low); and (iii) the ad objective (maximizing clicks or reach). We ran these

follow-up campaigns from February 24 to March 3, 2025. Appendix B provides more details on

product selection, ad creatives, and implementation.

Eight user audiences for each of 15 products generated a total of 120 audiences. Half of those

were assigned duplicated campaigns, while the other half had non-duplicated campaigns, for a total

of 180 follow-up campaigns. An implementation error affected three campaigns, giving a possible

sample of 177 campaigns. To limit the role of outliers, for our primary analyses in Section 3.5 we

also winsorize low CTRs at the 10th percentile and drop an additional trio of campaigns where the

two duplicate campaigns had less than 50 percent audience overlap, giving a “primary sample” of

174 campaigns.

3 Model-Free Empirical Evidence

The model in Section 1 highlighted key parameters that govern the effects of merging or separating

digital media platforms. We now present evidence on several of those parameters.

3.1 User Overlap

Table 1 presents data on Facebook and Instagram adult user overlap from the NPORS. The first

row shows that among the population of US adults that used Facebook or Instagram in 2020,

about 93 percent used Facebook and 59 percent used Instagram. The second row cuts the same

data differently. Of Facebook users, 56 percent used Instagram, making them “multi-homers” in

our analysis, and the remaining 44 percent were Facebook single-homers. Of Instagram users, 88

percent used Facebook, and the remaining 12 percent were Instagram single-homers.

In the model from Section 1, more user overlap magnifies the advertiser-side Cournot, user-side

substitution, and business stealing effects. The fact that more Instagram users are multi-homers

means that if the platforms were separated, these forces would be stronger for Instagram than

Facebook.

7Meta’s terms of use allow third parties to advertise product recommendations.
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One caveat is that like our other data, the NPORS does not include youth under 18, a population

that is less likely to use Facebook. However, youth are only a small part of the advertising market

and thus less important for our overall conclusions.

3.2 Time Use Distribution

Figure 1 presents the distribution of Facebook and Instagram mobile app time use in the FIES

Control groups during the last four weeks of the treatment period, when the Deactivation groups

were paid to be deactivated but the Control groups were not. To construct this figure, we com-

bine the separate Facebook and Instagram time use distributions reported by Allcott, Kiefer, and

Tangkitvanich (2025), up-weighting the Facebook sample such that the relative numbers of Face-

book and Instagram users match the NPORS data. The center of the figure is a heat map of

the joint time use distribution for multi-homers. The histograms at the top and right present the

marginal distributions of Facebook and Instagram use, respectively.

In these data, the average Facebook user spent 42 minutes per day on the app. Daily use was

similar for single-homers and multi-homers, with averages of 43 and 41 minutes per day, respectively.

The average Instagram user spent 14 minutes per day on the app. Single-homers spent more time

on the app than multi-homers, with averages of 16 and 13 minutes per day, respectively. The

distributions are skewed, with a smaller number of heavy users.

In the model from Section 1, the fact that the average multi-homer spends more time on

Facebook than Instagram has several implications for the separated versus merged equilibria. First,

all else equal, the “advertiser-side Cournot” effect is larger for Instagram: in the merged equilibrium,

Instagram has a larger incentive than Facebook to restrain ad load to keep ad prices high on the

other platform. Second, in the separated equilibrium, marginal duplication would be lower on

Facebook: more time on Facebook means that users are served ads with lower click-through rates

that are not duplicated on Instagram. Thus, duplication loss would decrease ad prices less on

Facebook than Instagram if separated.

Figure 1 also shows that time use variance is higher on Facebook. The standard deviations of the

marginal distributions are 31 and 15 minutes per day on Facebook and Instagram, respectively. As

discussed in Section 1, higher time use variance induces the platform—but not the social planner—

to reduce ad load.

Section 1 also discussed the importance of time use correlation within multi-homers. On one

extreme with perfect positive correlation, all the mass in the heat map in Figure 1 would be on

an upward-sloping 45-degree line. On the other extreme with perfect negative correlation, all the

mass would be on a downward-sloping line. In reality, Facebook and Instagram use are slightly

positively correlated, with a correlation coefficient of 0.02. As described in Section 1, this makes

marginal duplication higher than it would be with negative correlation, but lower than it would

be with a more positive correlation. This discussion highlights the value of high-quality time use

data and a model that can accommodate realistic time use distributions instead of, for example,

assuming that users are homogeneous.
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We highlight three caveats. First, these time use data include mobile app use only. Instagram

use has long been almost entirely on mobile (Comscore 2014). However, Kemp (2020) reports that

2.7 percent of users accessed Facebook only via computer in 2020, 29 percent used both phones and

computers, and 68 percent used only mobile phone. Thus, mobile time use somewhat understates

total Facebook time use.

Second, these time use data cover a specific four-week period in fall 2020, and this period was

after the Control group had been paid to deactivate for a week.8 Figures 2 and 3 (introduced

below) suggest that this week of deactivation may have initially reduced Control group time use

slightly relative to what it would have been otherwise, but average use over the final four weeks of

the five-week treatment period is roughly similar to the levels before and after the experiment.

Third, the market intelligence company eMarketer (2025) estimated that daily time use averages

in 2020 for Facebook and Instagram monthly active users were 33 and 29 minutes, respectively—

a much smaller difference than the FIES data suggest. While the FIES sampling and weighting

approaches should in theory deliver the most credible publicly available time use estimates, we

will present alternative estimates and counterfactual simulations that match the eMarketer (2025)

averages.

3.3 Diversion Ratios

The diversion ratios between Facebook and Instagram can be calculated from the effects of deac-

tivation payments in the FIES experiment. To illustrate the calculation, Figures 2 and 3 present

daily Facebook and Instagram use around the FIES experiment. The dark grey shading indicates

the week (from September 23–29) when both Deactivation and Control groups were being paid

to deactivate. The light grey shading indicates the five week treatment period (from September

30–November 3) when only the Deactivation group was being paid to deactivate.

Panel (a) of each figure presents use of the focal platform. In both figures, Control group use

decreased substantially from September 23–29 before returning close to its original level, while

Deactivation group use stayed depressed over the additional five-week treatment period.9 Panel

(b) of each figure presents use of the other platform. In both figures, Deactivation group use of the

other platform increased slightly over the treatment period, but by much less than focal platform

use decreased. This means that the diversion ratios are small.

To describe substitution patterns, Allcott, Kiefer, and Tangkitvanich (2025) use an instrumental

variables estimator to estimate the effects of deactivation on time use. Define Tij0 and Tijd as par-

ticipant i’s use of platform j during the baseline and deactivation treatment periods, respectively,

and define νs(i) as a vector of randomization stratum indicators. Further define Di as a deacti-

vation group indicator, and define D̃i as a measure of compliance with deactivation, with D̃i = 1

corresponding to zero focal platform use during the treatment period and D̃i = 0 corresponding to

8There are generally only a few days of baseline app use data before deactivation began on September 23.
9The Deactivation and Control groups appear to have slightly different baseline averages, but any imbalance

should not affect the diversion ratio estimates because equation (18) controls for baseline use.
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Control group average use. The estimating equation is

Ti,−j,d = τDj
−j D̃i + βTi,−j,0 + νs(i) + ϵij , (18)

instrumenting for D̃i with the deactivation group indicator Di. τDj
j and τDj

−j , respectively, are

the local average treatment effects (LATEs) of fully deactivating j on use of j and −j, for people

induced to deactivate by the $150 payment. Appendix Figure A2 presents these LATEs.

The (local average) diversion ratio is the ratio of LATEs on the other platform versus the focal

platform: δj−j = −τDj
−j /τ

Dj
j . By definition, the diversion ratio is positive if j and −j are substitutes,

and negative if they are complements. We calculate standard errors via the Delta method, assuming

zero covariance between τDj
j and τDj

−j .

Figure 4 presents the estimated diversion ratios δ−j
j from Facebook and Instagram to each other

and to ten other apps or categories. The diversion ratios from Instagram appear less precisely esti-

mated because average Instagram use is smaller, which decreases the diversion ratio’s denominator.

Roughly consistent with the graphical evidence discussed above, the estimated diversion ratio from

Facebook to Instagram is δ̂FI ≈ 0.054. In other words, reducing Facebook use by one minute in-

creases Instagram use by 0.054 minutes. The estimated diversion ratio from Instagram to Facebook

is δ̂IF ≈ 0.096. This is not statistically distinguishable from zero; the upper bound of the 95 percent

confidence interval is about 0.29.

The estimated diversion ratios to other apps are economically significant, although only mod-

erately precise. For Facebook users, two categories (web browsers and “all other apps”) have more

positive diversion ratio point estimates than Instagram. For Instagram users, YouTube, TikTok,

new apps, web browsers, and “all other apps” have more positive diversion ratio point estimates

than Facebook. The bottom row shows that when defining −j as total screen time (on all apps

combined, including Facebook and Instagram), the estimated diversion ratios are statistically zero.

This means that the data cannot reject that all Facebook or Instagram use is substituted to other

apps on the phone, although the estimates are imprecise, especially for Instagram. Diversion ratio

estimates for heavy baseline users are slightly more precise but qualitatively similar; see Appendix

Figure A4.

This evidence does not support the Federal Trade Commission’s market definition in FTC v.

Meta. If the appropriate market definition from the user’s perspective included only “personal

social networking services,” which the FTC (2021) defined primarily as Facebook, Instagram, and

Snapchat, the diversion ratios from Facebook or Instagram to the other two apps would be much

higher. In reality, the data imply that Facebook and Instagram compete in a much larger market for

users’ time and attention. The FTC (2021) describes qualitatively why “personal social networking”

may be a distinct service from the user’s perspective, but the time use diversion ratio is the

parameter that matters in our formal model of Meta’s incentive to exercise market power through

ad load.

The fact that there is a diffuse set of competitors makes our paper’s duopoly model more

reasonable, as our model takes other competitors to be a non-strategic competitive fringe. By
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contrast, if the data indicated that Facebook and Instagram’s competition was primarily only one

or two platforms, it might have been more realistic to endogenize how those competitors might

respond to a merger or separation.

One of Meta’s economic experts, John List, subsequently ran similar deactivation experiments,

finding strikingly similar results. To our knowledge, the writeup is not publicly available, but

Benedict (2025) reports that the diversion ratios were 0.05 from Facebook to Instagram and 0.12

from Instagram to Facebook, again with YouTube and web browsers both being closer substitutes.

We highlight three caveats. First, the substitution effects and diversion ratios are local to

people induced to deactivate by the $150 payment, and the diversion ratios could be different in

the full population. For example, people with higher valuations of Facebook or Instagram might

have been unwilling to deactivate precisely because they didn’t think the other platform was a good

substitute. In this example, the full-population diversion ratios between Facebook and Instagram

would be smaller than our estimates, strengthening our finding that the diversion ratios are small.

Second, the FIES experiment incentivized individual-level deactivation. Network effects could

change substitution patterns if ad load changes also affect users’ friends’ time use (Bursztyn et al.

2025). However, since time use is quite inelastic to ad load, it changes little in our counterfactual

simulations in Section 5. Thus, this concern does not seem to be important for our research

question.

Third, the FIES experiment incentivized deactivation for a total of only six weeks. In theory,

substitution patterns could be different over a longer horizon due to switching costs: users must

learn about and download other apps, build new social networks, and develop user histories that

apps can use to serve more engaging personalized content. However, there are several reasons why

long-run diversion ratios may not be much different than our estimates. First, as shown in Table 1

and Figure 1, most Facebook and Instagram users already use the other of those two apps and have

thus incurred the switching costs. Second, many other substitute apps could have similar switching

costs. Thus, even if Facebook or Instagram became more appealing in the long run, so would many

other substitutes, limiting any changes in diversion ratios.

3.4 Price Response

While social media users pay zero price, the price response parameter translates the effects of ad

load changes into consumer surplus. We identify the price response by estimating the effect of the

DA experiment Screen Time Bonus on Facebook and Instagram time use.

Figure 5 presents daily average Facebook and Instagram use for the Bonus and Control groups.

The grey shading indicates the 20-day bonus period (from May 25–June 13) when the Bonus group

was being paid to reduce social media use but the Control group was not. Panel (a) shows that

among Facebook users during the bonus period, Facebook use in the Control and Bonus groups

averaged about 64 and 36 minutes per day, respectively. Panel (b) shows that among Instagram

users during the bonus period, Instagram use in the Control and Bonus groups averaged about 20

and 13 minutes per day, respectively. Thus, the bonus reduced Facebook and Instagram use by
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just over 40 percent. There are statistically zero differences in all weeks before and after the bonus

period; see Appendix Figure A5.

To formally estimate the effect of the bonus on Facebook and Instagram use, define Bi as a

Bonus group indicator, and define Tij0 and Tijb as use of j during the baseline and bonus periods,

respectively. We estimate

Tijb = τBj Bi + βTij0 + β0 + ϵij . (19)

τBj is the effect of the bonus on use of platform j. For the structural estimation in Section 4, we

will need τ̂Bj and Control group average use for both Facebook and Instagram users, as well as

the covariance matrix between those four parameters. Thus, we jointly estimate these parameters

using Seemingly Unrelated Regression. See Appendix Table A2 for results.

The estimates are closely consistent with the raw data in Figure 5. Among Facebook users

during the bonus period, Facebook use dropped by about 27 minutes per day, or 42 percent relative

to the Control group. Among Instagram users, Instagram use dropped by about 8 minutes per day,

or 41 percent relative to Control.

These are strikingly large price responses: they mean that users value more than 40 percent of

their Facebook and Instagram use at less than $2.50 per hour. This will have important bearing

on our consumer surplus estimates: changes in time on platform or ad load translate to consumer

surplus changes that are smaller than they would be if demand were more inelastic.

We highlight two caveats. First, the DA experiment bonus was only for reducing mobile app

use, and time use on other devices was not directly tracked. Allcott, Gentzkow, and Song (2022)

present self-reports of use on other devices that strengthen the conclusion that app demand is

very elastic. Second, the DA experiment bonus incentivized reduced use of multiple apps, not just

Facebook or Instagram individually. Since the diversion ratio estimates above show that the other

incentivized apps are slight substitutes for Facebook and Instagram, incentivizing reductions in

other apps slightly increases Facebook or Instagram use, which biases the price response slightly

toward zero relative to a bonus that only incentivized Facebook and/or Instagram reductions. This

further strengthens the conclusion that demand is very elastic.

3.5 Diminishing Returns

The Ad Duplication Experiment allows us to estimate diminishing returns, by comparing click-

through rates on duplicated versus non-duplicated ad campaigns.

Table 2 reports summary statistics on the 174 follow-up campaigns in the Ad Duplication

Experiment primary sample. The average initial campaign identified an audience size of 1,302

users. The average follow-up campaign reached 65.3 percent of that initial audience. The average

duplicated share is 0.855. This means that for the average duplicated follow-up campaign, 85.5

percent of its impressions were to users that were also impressed by the other duplicated campaign.

The average frequency was 4.07 impressions per user per week, and the average click-through
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rate was 1.4 percent. Winsorizing the CTR at the 10th percentile leaves the mean and standard

deviation unchanged up to the third decimal. The average cost per 1,000 impressions (CPM) was

$12.41. For comparison, the average CPMs reported by Birch (2025), a market research firm, were

around $14 for both Facebook and Instagram during the month we ran the experiment.

Figure 6 presents the data. For each of the product-budget-objective triples in the primary

sample, there are two duplicated campaigns and one non-duplicated campaign. Each dot on the

figure is a duplicated campaign. The y-axis is the natural log of a duplicated campaign’s CTR

over the CTR of its corresponding non-duplicated campaign. The x-axis is the share of users also

impressed by the other duplicated campaign.

If there were no diminishing returns and the duplicated campaigns thus had the same average

click-through rate as non-duplicated campaigns, then the best-fit line would be flat at a level of

ln(1) = 0. On the other extreme, if the second campaign had no returns, then the average CTR

across fully duplicated campaigns would be 50 percent of the non-duplicated one. In that case, the

best-fit line would have a downward slope, and at the right of the graph with full duplication, the

dashed line would be at ln(50%) ≈ −0.69.

The actual data in Figure 6 are in between those two extremes, and closer to the extreme of no

additional returns. As the duplicated share of users in the duplicated treatment condition grows,

the relative click-through rates on duplicated campaigns falls. At the point where the dashed best-

fit line hits a 1.0 duplication share, the average duplicated campaign has ln(CTR) about 0.32 lower

than non-duplicated ones.

To formally estimate the effect of duplication on click-through rates, index ad campaigns by a

and product-budget-objective triples by g(a). Define D̃a as the duplicated share (for duplicated

campaigns) or zero (for non-duplicated campaigns). Further define Fa as the average frequency (in

impressions/user-week), Ra as reach (as a share of the initial audience), and νg(a) as a product-

budget-objective fixed effect. We estimate

ln (CTRa) = λD̃a + βFFa + βRRa + νg(a) + ϵa, (20)

instrumenting for D̃a with Da, an indicator for whether ad campaign a is duplicated. λ is the

difference in click-through rates for fully duplicated versus non-duplicated campaigns.

Table 3 presents results. The first three columns present OLS estimates of equation (20),

while the latter three columns present IV estimates, with each set incrementally adding controls

for frequency and reach. The OLS λ is identified from the variation illustrated in Figure 6: the

association between click-through rates and duplicated share within the set of duplicated campaigns.

The IV λ is identified differently: the Wald estimator gets the difference in average ln(CTR) for

duplicated versus non-duplicated campaigns and scales it up by the average duplicated share.

Despite the different identification and controls, the λ̂ estimates in all six columns are very

similar to each other and to the fit of Figure 6, ranging from -0.262 to -0.353. The coefficients on

frequency and reach have the expected signs: they are both negatively associated with CTR, due

to diminishing marginal returns to impressions and users impressed. We think of column 6 as our
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primary estimate, giving λ̂ ≈ −0.335. The results are very similar when we do not winsorize CTRs

at the 10th percentile or drop the three campaigns where the duplicated campaigns had less than

50 percent overlap; see Appendix Table A4.

This estimate implies that duplication makes impressions materially less valuable: the average

CTR in a fully duplicated campaign is 1−exp(−0.335) ≈ 28% lower than in a non-duplicated cam-

paign. The economic implication of this result is that there could be material economic losses from

separating two platforms if they cannot coordinate ad delivery to avoid duplicate ad impressions

to the same users.

We emphasize several caveats. First, while we carefully designed our experiment around repre-

sentative popular products, we do not know what the results would be in a fully random sample

of ads and users. Second, the diminishing return parameter we estimate naturally depends on

the number of ad impressions in the campaigns. For example, duplicated campaigns with one im-

pression might have higher CTRs than campaigns with ten impressions. Our diminishing return

parameter is exactly externally valid if our follow-up campaign frequencies are representative or if

the frequency-CTR relationship is has constant semi-elasticity, as in equation (20). To test whether

diminishing returns vary by baseline CTR, we estimate equation (20) with an additional interaction

between D̃a and an indicator for a in a high budget treatment condition. Appendix Table A5 shows

that in all specifications, the interaction effect is statistically zero and the main diminishing returns

estimate essentially unchanged, even though frequency is about 50 percent higher in high budget

treatments. This supports the external validity of our estimates across campaigns with varying

frequencies.

4 Structural Estimation

In this section, we use a minimum distance estimator to estimate the model from Section 1 using

the experimental results from Section 3 plus additional parameters. We now describe the functional

forms, empirical moments, estimation routine, and parameter estimates.

4.1 Functional Forms

To take the model to the data, we need to impose functional forms on utility and diminishing

returns to ad impressions.

4.1.1 Utility

Define yi as income and ni as numeraire good consumption, both in units of $/day. Define b as the

price per minute of time spent on social media; b = 0 normally, but b = bB in the DA experiment

Bonus condition. We assume that users maximize quadratic utility
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Ui (T i, ni;α) =
∑
j

[
(ξij − γjαj)Tij − σjT

2
ij/2

]
+ ρTi1Ti2︸ ︷︷ ︸

quadratic utility from time on platform

+ ni︸︷︷︸
numeraire

, (21)

subject to budget constraint yi = ni + b
∑

j Tij .

We assume that αj , σj , γj , and ρ are homogeneous across users, so all time use heterogeneity

arises from differences in ξij . Under this functional form, the average and marginal disutility from

ads are the same, so there is no Spence (1975) quality distortion.

Maximizing utility gives users’ choice of time on platform j as a function of time on the other

platform −j:

Tij (α) =
ξij − γjαj − b + ρTi,−j

σj
. (22)

We model three exogenous user types: Facebook single-homers, Instagram single-homers, and

multi-homers. Platform j single-homers exogenously have Ti,−j ≡ 0. Multi-homers have Tij (α) > 0

in the baseline merged equilibrium. Let k ∈ {s,m} index single-homer and multi-homer user types,

and define µj as the share of j’s users that are multi-homers.

Define ξkj as the mean of ξij for platform j’s user type k. The modeled averages of time on

platform j for single-homers, multi-homers, and all users are, respectively:

Tsj =
ξsj − γjαj − b

σj
(23)

Tmj =
ξmj − γjαj − b + ρTm,−j

σj
=

(ξmj − γjαj − b) + (ξm,−j − γ−jα−j − b) · ρ/σ−j

σj − ρ2/σ−j
(24)

Tj = (1 − µj)Tsj + µjTmj . (25)

We model four treatment conditions, indexed by g. First, condition g = B is the DA experiment

Bonus group, modeled by setting b = bB in equations (23) and (24).10 In all other conditions, b = 0.

Second, g = Dj is the FIES experiment Deactivation groups if every user fully deactivated, modeled

by setting Tij = 0. For multi-homers, this gives TDj
m,−j =

ξm,−j−γ−jα−j

σ−j
. Third, g = Aj is a condition

with no ads on platform j, modeled by setting αj = 0. Fourth, g = C is Control.

Define T g
j as the modeled average time use in treatment condition g, and define T g

kj as that

modeled average for user type k. Define T̂ g
j and T̂ g

kj as the observed empirical analogues.

To maintain linear aggregate demand, we do not impose a constraint that Tij ≥ 0. Thus, in

some simulations with higher ad load or b = bB, some individual simulated users with low ξij may

have negative simulated time use.

10Note that this formulation ignores the fact that the DA experiment bonus was also for reducing time on several
apps that are modeled as part of the outside option. As described in Section 3.4, this biases the price response toward
zero and strengthens the conclusion that demand is quite elastic.
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4.1.2 Diminishing Returns to Ad Impressions

Assumption 3 requires that for all users, the diminishing returns parameter ζi is sufficiently large

to ensure that the merged platform doesn’t serve them any ad campaign twice. To ensure that this

holds for all i, we choose a functional form for ζi by rearranging the bound from Assumption 3:

ζi = 1 − κ · pi (αm)

η · (1 + η0)
, (26)

for κ ∈ [0, 1]. κ captures the return to a duplicated ad campaign. κ = 0 implies ζi = 1, meaning

zero clicks on the duplicate campaign. κ = 1 implies 0 < ζi < 1, meaning some additional clicks.

In Section 3.5, we used the Ad Duplication Experiment to estimate a parameter λ capturing

the difference in log click-through rates between duplicated and non-duplicated campaigns. To con-

struct the modeled value of λ, recall that user i’s click-through rates for the first and second ad cam-

paigns are ωia and (1 − ζi) ·ωia, respectively. Thus, the average CTR for a representative sample of

users exposed to one campaign is E [ωia], and the average per-campaign CTR across representative

users exposed to two identical campaigns is 1
2E [ωia + (1 − ζi) · ωia]. After rearranging and applying

ωia ⊥ ζi from Assumption 1, this equals E [ωia] · E [1 − ζi/2]. The difference in log CTRs between

duplicated and non-duplicated campaigns is thus λ = ln (E [ωia] · E [1 − ζi/2]) − ln (E [ωia]) =

ln (E [1 − ζi/2]). Substituting equation (26) gives

λ = ln

(
1

2
+

κ

2
· 1

N

∑
i

pi (αm)

η · (1 + η0)

)
. (27)

4.2 Exogenous Parameters and Empirical Moments

Exogenous parameters. Table 4 presents the exogenous parameters, which we assume have zero

standard errors. Since much of our empirical data described in Sections 2 and 3 are from 2020, we

also use exogenous parameters from that year when possible.

As described in Section 3.1, we use estimates from the NPORS for the share of Facebook and

Instagram users that are multi-homers. The DA experiment bonus was bB = $2.50/hour.

Facebook and Instagram ad load were computed specially for this project by Similarweb, a

large digital data aggregator. Using a panel of over 100,000 mobile device users in the U.S., they

compute that Facebook and Instagram ad loads were αm
F = 69.9 and αm

I = 57.6 ads per hour in

2024. (Their data do not extend back to 2020.) The m superscripts represent that these data

correspond to our model’s merged equilibrium.11

Because we think of marginal cost cj as partially representing network effect dynamics and

Facebook is a mature social media platform, we assume cF = 0 and estimate cI for our primary

analysis. We normalize the total number of Facebook and/or Instagram users to N = 1; this

rescales cI but has no other effect. We also normalize Am = 1000; this rescales η and η0 but has

11Hemphill (2025, slides 24-25) reports a similar hourly Facebook ad load and a similar ratio of Facebook to
Instagram ad load for 2022.
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no other effect.

Empirical moments. Table 5 presents the empirical moments we use for estimation. Control

group time use averages T̂C
kj for our primary analysis are from FIES, as reported in Section 3.2.

Diversion ratios δ̂j−j are also from FIES, as reported in Section 3.3. Percent responses to the DA

bonus τ̂Bj /T̂C
j are from the DA data, as reported in Section 3.4. The duplication effect λ̂ is from

the Ad Duplication Experiment, as reported in Section 3.5.

The percent effect of ad removal on time use is
TAj
j −TC

j

TC
j

. We import this empirical moment

from Brynjolfsson et al. (2024), who study a long-term Facebook experiment in which a random

0.5 percent of Facebook users have never received ads in their news feeds. For 53,083 users from 13

countries who opted into their survey in March 2022, they estimate that time spent on Facebook

in the week before their survey was 9.4 percent higher in the ad holdout group.12 For our primary

estimates, we assume that this parameter is the same for both Facebook and Instagram.

The Brynjolfsson et al. (2024) estimate is from one week of data in a self-selected sample.

However, for the Pandora radio app, Goli et al. (2025) estimate that the long-term elasticity of

time on platform with respect to ad load is -0.070. The fact that this is is very close to the -0.094

arc elasticity implied by Brynjolfsson et al. (2024) gives additional credibility to the estimates.

Birch, a large firm that helps advertisers optimize social media campaigns, reports weekly

Facebook and Instagram ad prices for US audiences (Birch 2025). The average across the two

platforms over the 52 weeks in 2020 was p̂m = $10.18 per 1000 impressions.

4.3 Estimation

We estimate the structural parameters using a minimum distance estimator that minimizes the sum

of squared errors between model-predicted moments and their empirical analogues. Define Θ :=

{{ξkj} , ρ, {σj} , {γj} , κ, η, η0, cI} as the vector of 13 structural parameters to be estimated, and

define h (Θ) :=
{{

hCkj

}
, hD,

{
hBj

}
,
{
hAj

}
, hL, hPj ,

{
hFj

}}
as the vector of 13 distance functions

to be described below. Our estimate of Θ minimizes the sum of squared distance functions:

Θ̂ = arg min
Θ

h (Θ)′ h (Θ) . (28)

The model is just-identified, so parameter estimates are invariant to choice of weighting matrix.

We construct standard errors using the Delta method. See Appendix D.2 for details.

We now detail the distance functions. Following Andrews, Gentzkow, and Shapiro (2017), we

also describe which parameters are most elastic to each empirical moment, using the estimated

sensitivity matrix presented in Appendix D.3.

Control group use. There are four control group use distance functions, matching average

Facebook and Instagram use for single-homers and multi-homers:

12They do not report a standard error, but we approximate a standard error of 0.019 percent by visually inspecting
the confidence intervals for T̂Aj

j and T̂C
j reported in Figure 2 of their working paper.
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hCkj (Θ) = TC
kj − T̂C

kj . (29)

While the utility function parameters are identified jointly, the average demand shifters ξkj are

particularly sensitive to these empirical moments.

Diversion ratio. There is one diversion ratio distance function, matching the average diversion

ratio from Facebook and Instagram deactivation:

hD (Θ) =
1

2

∑
j

[
TDj
−j − TC

−j

TC
j

− δ̂j−j

]
. (30)

The substitution parameter ρ is most sensitive to this empirical moment.

Price response. There are two price response distance functions, matching the percent reduc-

tions in Facebook and Instagram use from the DA experiment bonus:

hBj (Θ) =
TB
j − TC

j

TC
j

−
τ̂Bj

T̂C
j

. (31)

The utility function curvature parameters σj are most sensitive to these empirical moments.

Ad response. There are two ad response distance functions, matching the percent increases

in Facebook and Instagram use from ad removal:

hAj (Θ) =
TAj
j − TC

j

TC
j

−
̂

TAj
j − TC

j

TC
j

. (32)

The ad load disutility parameters γj are particularly sensitive to these empirical moments.

The distance functions described so far fully identify the utility function parameters {ξkj}, ρ,

{σj}, and {γj}. In other words, those parameters have zero sensitivity to the remaining moments

described below.

Diminishing return. The diminishing return distance function matches the difference in log

CTRs between duplicated and non-duplicated campaigns:

hL (Θ) = λ− λ̂. (33)

The return to duplication κ is the only parameter sensitive to this empirical moment.

Ad price. There is one ad price distance function, matching the Facebook and Instagram

average ad price:

hPj (Θ) =

∑
i∈U α · T i (αm) · pi∑

i∈U α · T i (αm)
− p̂m. (34)
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The modeled moment is the time use-weighted average of user-level ad prices pi, which is

equivalent to the average ad price across impressions.

The merged equilibrium price pi is a function of α, T i, and other variables, per equation

(4). After substituting that equation into equation (34), this distance function can be rewritten

as a function of the means, variances, and cross-platform covariance of merged equilibrium time

use across users, instead of as a sum over i. To speed up estimation, we use that rewritten

distance function with time use moments from the observed distribution described in Section 3.2;

see Appendix D.1 for details.

Platform first-order condition. Our final two distance functions are the first-order condi-

tions for profit-maximizing ad load on the two merged platforms:

hFj (Θ) =
∑
i

[
∂pi
∂αj

·α · T i (α) + pi ·
(
Tij (α) + αm · ∂T i (α)

∂αj

)]
− cj . (35)

From the functional forms in Section 4.1, we have ∂T i(α)
∂αj

=
−γj

σj−ρ2/σ−j
. As with the ad price

distance functions, we substitute pi and ∂pi
∂αj

from equation (4) and estimate a rewritten distance

function with observed time use moments; again see Appendix D.1 for details.

These distance functions are inspired by the approach of Berry, Levinsohn, and Pakes (1995)

and other papers that estimate demand and then use the first-order conditions to infer marginal

costs. We reverse that approach: we instead assume zero marginal cost on Facebook and then use

the Facebook FOC to infer the demand elasticity. Then the Instagram marginal cost adjusts so

that the Instagram FOC also holds. The advertiser demand slope and intercept η and η0 are jointly

sensitive to both the Facebook FOC and the ad price moment. Instagram ad cost cI is the only

parameter sensitive to the Instagram FOC.

4.4 Parameter Estimates

Table 6 presents the structural parameter estimates. Within each platform, the estimated single-

homer and multi-homer demand intercepts ξ̂kj are similar, driven by the similar observed average

time use for single-homers versus multi-homers. The estimated platform substitution parameter ρ̂

is negative, driven by the result that the platforms are mild substitutes. The estimated curvature

σ̂j is about three times larger for Instagram for Facebook, driven by the result that the Facebook

and Instagram price responses are similar as a percent of Control group use, but Instagram Control

group use is about three times smaller. Instagram’s larger σ̂j implies that Instagram use will

respond less than Facebook use (in absolute minutes) to counterfactual changes in ad load. The

estimated ad load disutilities γ̂j are similar between the two platforms, driven by the same assumed

ad load response moment.

The estimated return to duplication parameter is κ̂ ≈ 0.557, driven by the relatively large de-

crease in click-through rates on duplicated campaigns in the Ad Duplication Experiment. Recalling

the functional form for ζi in equation (26), this estimate means that across all users, the CTR on
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the second ad campaign is never more than about 56 percent of the CTR on the first. We calculate

that in the merged equilibrium, the time use-weighted average diminishing return parameters for

Facebook and Instagram are ζF ≈ 0.66 and ζI ≈ 0.64. This means that on average, a second

campaign on the respective platforms would have CTRs about 66 and 64 percent lower than the

first.

The estimated Instagram ad load cost, driven by the Instagram FOC, is cI ≈ $0.0007 per

ad/hour. Given the ad load of 57.6 ads/hour, this implies a cost of $0.043 per user-day. Given ad

load, prices, and time use, this is about 39 percent of revenues.

As defined in Section 1, the parameter η is the negative of advertisers’ inverse demand slope for

impressions to each user. The estimate is η̂ ≈ 0.080 ($/impression)/(share of A), meaning that if ad

prices decrease by $0.001 per impression (about 10 percent of baseline p̂m), about $0.001/(0.080) ≈
1.26% of all advertisers in the market would additionally buy impressions for each user. To translate

into an elasticity, we must compute baseline ad quantity. Using formulas in Appendix D.4, we

calculate that at Meta’s profit-maximizing ad load, the aggregate elasticities of advertiser demand

are -1.10 on Facebook and -2.0 on Instagram. This corresponds to intuition from the inverse

elasticity markup rule. Since user time is relatively inelastic to ad load and we set cF = 0,

Facebook ads have low marginal opportunity cost, and Facebook ad load is optimally set close

to the point where advertiser demand is unit elastic. Since the implied cI is a moderate share of

revenues, Instagram ad load is set where advertiser demand is moderately more elastic.

For counterfactuals, we also need estimates of the distribution of user demand shifters ξij . We

invert equation (22) to back out ξij , giving ξ̂ij = Tij σ̂j + γ̂jα
m
j − ρ̂Ti,−j . We then construct the

distribution of ξ̂i given the estimated parameters and the time use distribution from Figure 1.

5 Counterfactual Simulations

In this section, we use the estimated model to compare the social optimum and merged and sepa-

rated equilibria. To solve for socially optimal ad load, we numerically maximize total surplus from

equation (10). To solve for separated equilibrium ad load, we iterate over the reaction functions

until reaching a fixed point. We use a grid of starting points to rule out multiple equilibria. We

first present our primary results, followed by alternative specifications and parameter sensitivity

analysis. Appendix E presents implementation details.

5.1 Primary Simulation Results

Table 7 presents counterfactual simulation results. Panel (a) presents market outcomes, while Panel

(b) presents surplus effects normalized by N , the total number of people that use Facebook and/or

Instagram. Column (1) presents the merged equilibrium baseline, while the remaining columns

present changes relative to that baseline.

Consider first the merged equilibrium baseline in column (1). The market outcomes in Panel (a)

are the same as used for estimation in Section 4. Although all multi-homing users have the same

30



ad price pmi when served on either platform, the average ad prices differ across platforms because

the user populations have different time use distributions.

Panel (b) presents baseline levels of consumer and advertiser surplus under our globally linear

functional forms. The rough magnitudes are broadly consistent with external estimates. In our

model, total annual consumer surplus from Facebook and Instagram is $1,839 per person who uses

Facebook and/or Instagram. For comparison, Brynjolfsson, Collis, and Eggers (2019) estimate that

the median Facebook user in 2016 and 2017 would need to be paid $38–$48 to give up Facebook for

one month, while Allcott et al. (2020) estimate that the median person that used Facebook more

than 15 minutes per day in 2018 would need to be paid $100 to give up Facebook for 28 days. In

our model, Facebook and Instagram, respectively, earn $163 and $19 in annual ad revenue per adult

that uses one or both of the platforms. The Facebook number is much larger because Facebook

has more users and higher average time per user. For comparison, Meta (2021b) reported $164 in

total revenue (including Facebook and Instagram) per Facebook monthly active user for the U.S.

and Canada in 2020.

Because globally linear demand is a strong assumption, we do not place much emphasis on the

exact values of baseline consumer and advertiser surplus. However, it is economically important

that consumer surplus is an order of magnitude larger than advertiser surplus or platform profits.

Because the estimated ad load response from Brynjolfsson et al. (2024) is highly inelastic, time use

changes only slightly as we consider alternative scenarios in columns (2)–(6). For the same reason,

consumer surplus changes little in percent terms. However, even these small percent changes in

consumer surplus weigh heavily in total surplus because consumer surplus is so large.

Columns (2) and (3) compare the social optimum to the baseline. To understand how ad load

changes in the social optimum, recall from Section 1.3 that the planner restricts ad load to avoid

consumer harm, while the platform restricts ad load to increase ad prices. Specifically, equation

(14) showed that while the planner considers user ad disutility γj , the platform considers the level

and variance of time use, which govern how ad price changes affect revenue. Since Figure 1 shows

that Facebook users have much higher time use variance than Instagram, merged equilibrium ad

load is more suppressed on Facebook than Instagram, relative to the social optimum. We calculate

that this is the primary reason why our model predicts that in the social optimum, ad load increases

on Facebook while decreasing on Instagram.

Aggregating across the two platforms, we calculate that merged equilibrium ad load is too

low: ad impressions per person increase from 53.3 impressions/user in the merged equilibrium to

54.3 impressions/user-day in the social optimum. This qualitative finding holds if we re-estimate

parameters and re-simulate counterfactuals after equalizing time use variance across platforms.

Thus, our conclusion that merged equilibrium ad load is too low depends on our estimates of γj

and the effect of ad load on revenue, not asymmetric time use variance.

Panel (b) shows that these socially optimal ad load changes would shift surplus from Meta and

its users to advertisers, but total surplus is only slightly higher than the merged equilibrium level.

Columns (4) and (5) present the separated equilibrium with coordinated ad delivery. Recall from
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Section 1 that in this scenario, Facebook and Instagram independently set ad load to maximize

their own profits, but then the available ad slots are allocated optimally across platforms, with

one ad price pi per user. In theory, separating the platforms could either increase or decrease ad

load, depending on the relative magnitude of the advertiser-side Cournot effect versus the user-side

substitution effect. Since the estimated user diversion ratio and ad load response are both small,

the user-side substitution effect is small, and thus the advertiser-side Cournot effect dominates:

separation increases ad load as it induces the platforms to compete harder for advertisers. This

effect is stronger for Instagram because it has more multi-homers: ad load increases by 1.8 and 38.2

percent on Facebook and Instagram, respectively. As a result, ad prices decrease by 3.4 percent

and 9.2 percent on Facebook and Instagram, respectively.

As described above, the ad load increases cause only small percent changes in time use and

consumer surplus, but consumer surplus is still a key part of the total surplus change. Overall,

consumer surplus decreases by about $10.18 per user-year, advertiser surplus increases by $9.10

per user-year, Facebook profits decrease as the Instagram ad load increase cannibalizes Facebook

profits, and Instagram profits increase. Total surplus decreases by $2.62 per user-year, or about

0.1 percent. Thus, separating the platforms generates a net transfer from the platforms and their

users to advertisers and a small overall social loss.

Columns (6) and (7) present the separated equilibrium with uncoordinated ad delivery. Recall

from Section 1 that in this equilibrium, Facebook and Instagram allocate ad slots optimally within

each platform, but the two platforms may serve duplicate ad impressions to the same multi-homing

user. When the platforms are separated, inefficient duplication affects profit-maximizing ad load

beyond the advertiser-side Cournot effect by reducing ad prices and generating the “business steal-

ing” incentive to reduce marginal overlap. The overall effect is to increase ad loads by 9.4 and

46.4 percent on Facebook and Instagram, respectively, relative to the merged equilibrium baseline.

Since duplication reduces the value of ads, ad prices are lower than in the coordinated ad delivery

scenario—especially for Instagram, which has higher marginal duplication than Facebook because

it has more multi-homing users and lower average time use.

Duplication loss also substantially affects surplus. At the separated equilibrium ad load, we

compute ζF ≈ 0.66 and ζI ≈ 0.64, meaning that the second ad campaign on the two platforms has

66 and 64 percent lower click-through rate. Advertiser surplus increases by 15.0 percent relative

to the merged equilibrium. However, if there were no duplication loss (i.e., if ζi = 0, ∀i) but the

same ad loads and prices, advertiser surplus would increase by 56.5 percent relative to the merged

equilibrium.

If Facebook and Instagram were separated in reality, duplication loss would likely be somewhere

in between the two scenarios we model. Fully coordinated ad delivery seems unlikely due to technical

and privacy constraints. However, the large duplication loss in the uncoordinated ad delivery case

also seems unlikely, for several reasons. First, the separated platforms could eventually predict

different ωia given different data and algorithms, as we model in Appendix A.3. Second, platforms

could adjust ad frequency in a way that our model does not contemplate. Third, some social
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media advertising is via “custom lists” of specific users provided by advertisers, and multi-homing

advertisers could submit disjoint custom lists on separate platforms to avoid duplication. Fourth,

even without explicit data on which users multi-home, separated platforms’ ad delivery systems

could infer lower ωia for multi-homing users as they start to click less because of seeing duplicate

impressions on another platform. Thus, we think of these scenarios as possible bounds on the

effects of separation through ad load and duplication.

5.2 Alternative Specifications

As described in Section 3.2, the FIES data imply that average daily Facebook use is considerably

higher than average Instagram use, while eMarketer (2025) reports more similar values. Appendix

E.5 presents alternative parameter estimates and counterfactual simulations under the eMarketer

(2025) time use assumptions. The magnitudes of various predictions change, but the qualitative

implications are similar.

We think of the Instagram marginal cost cI as a reduced form for network effects and other rea-

sons why the ad load first order condition doesn’t exactly match the data. Appendix E.5.2 presents

results under an alternative model where we set cI = cF = 0, drop the Instagram ad response

distance function hAI from the estimation, and use the Instagram FOC to identify the Instagram ad

disutility γI . In that appendix, we also present a model with explicit network effects and interpret

the estimates through the lens of that model. The estimated elasticity of Instagram time use with

respect to ad load is much larger than the individual-level direct effect from Brynjolfsson et al.

(2024). As a result, the modeled social optimum involves zero ads on Instagram, and separation

decreases Instagram ad load as Instagram competes harder on the user side. We do not currently

think of this as our primary specification because we think that the implied ad load elasticity may

be too large and because it takes a more specific stand on the reason why the FOCs don’t exactly

match the data.

5.3 Parameter Sensitivity Analysis

We now explore the sensitivity of the counterfactual simulation results to different values of key

parameters. We perturb one structural parameter at a time, leaving the rest unchanged, and find

equilibrium ad load and total surplus. In each of Figures 7–10, Panel (a) presents ad load on each

platform in the merged equilibrium and separated equilibrium with uncoordinated ad delivery,

relative to ad load in the merged equilibrium at baseline parameter value. The merged equilibria

are in solid lines, while the separated equilibria are in dashed lines; Facebook and Instagram are

blue and orange, respectively. Panel (b) presents the effect of separation with uncoordinated ad

delivery on total surplus, as a share of total surplus in the merged equilibrium at the baseline

parameter value.

Figure 7 presents the effects of varying the platform substitution parameter ρ. The baseline

value is ρ̂ ≈ −1.18 $/hour2, from diversion ratios of 0.054 and 0.096 . Moving to the right on Panel

(a) shows that as the platforms become weaker substitutes and eventually stronger complements,
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separation causes larger ad load increases, as the separated platforms have less incentive to restrain

ad load to compete for users. The platforms would have to be much stronger substitutes than

the FIES diversion ratios suggest for separation to reduce ad load in this model. These effects are

stronger for Instagram, because more of its users are multi-homers. Panel (b) shows that the total

surplus effect of separation is less negative as the platforms become stronger substitutes.

Panel (b) shows the importance of credibly estimating the user diversion ratio: if the platforms

were stronger substitutes, then platform separation could increase total surplus as the decreased

ad load would increase user surplus by enough to overwhelm the loss of advertiser surplus and

increased duplication of impressions.

Figure 8 presents the effects of varying the ad disutility parameter γ. The baseline values for

Facebook and Instagram are γF ≈ $0.0078 and γI ≈ $0.0087 of disutility per ad. All lines in Panel

(a) are downward sloping, confirming that platforms serve fewer ads when users dislike ads more.

At low γj , separating the platforms causes them to compete harder for advertisers by increasing ad

load relative to the merged equilibrium, so the dashed lines are above the solid lines. At high γj ,

separation causes the platforms to instead compete harder for users by decreasing ad load relative

to the merged equilibrium, so the dashed lines are eventually below the solid lines.

This generates the non-monotonic relationship in Panel (b). At low γj , the high ad load in-

creases advertiser surplus but does not harm user surplus because users don’t care about ads. At

intermediate γj , separation still increases ad load as platforms compete primarily for advertisers,

but the user surplus loss overwhelms the advertiser surplus gain. At high γj , separation decreases

ad load, and the user surplus gain eventually outweighs the lost advertiser surplus.

Figure 9 presents the effects of varying user overlap. To increase overlap (moving to the right

of the graph from the baseline), we combine pairs of Facebook and Instagram single-homers into

multi-homers. To decrease overlap, (moving to the left from the baseline), we split multi-homers

into separate Facebook and Instagram single-homers. As we combine or split users, we adjust

utility functions so that time use and consumer surplus are both unchanged at merged equilibrium

ad load; see Appendix E.4 for details. There is a kink in the predictions at the baseline because

single-homers and multi-homers have different time use distributions, but we don’t think of this as

economically substantive. We stop increasing overlap once all Instagram users are multi-homers,

and stop decreasing overlap once all users are single-homers.

Panel (a) shows that in the merged equilibrium, ad load is mostly decreasing in overlap. When

more users are single-homers, higher ad load on platform j decreases inframarginal revenue on

platform −j (and hence total revenue) by less, encouraging higher ad load. The effect is greater on

Instagram, since a greater share of Instagram multi-homer time use is on Facebook than vice versa.

Separation has no effect on ad load when all users are single-homers, as even separated platforms

are monopolists over their single-homers. When more users are multi-homers, separation increases

ad load by more, due to the advertiser-side Cournot and business stealing effects.

Panel (b) shows that more overlap implies less benefit and eventually larger total surplus loss

from separation. This is for two reasons. First, the larger ad load increase at higher overlap harms
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users. Second, more overlap causes more inefficient duplication. The y-axis scale indicates that the

effect of separation on total surplus is relatively sensitive to overlap, underscoring the importance

of reliable user data. With 40 percent multi-homers instead of 50 percent, separation increases

instead of decreases total surplus.

Finally, Figure 10 presents the effects of varying diminishing returns. To do this, we vary κ on

its entire admissible range from its maximum at κ = 1, implying low ζj and thus low diminishing

returns, to its minimum at κ = 0, implying ζj = 1 and thus fully diminishing returns. For this

figure only, we set cI = 0 and present changes relative to the re-computed merged equilibrium.

(This eliminates an effect where cI becomes very important as ad prices drop, which we do not

think is economically substantive.)

Panel (a) shows that higher ζjcauses a greater ad load increase from platform separation. This

is because higher ζj amplifies the business stealing incentive for platforms to increase ad load to

avoid duplication. The effect is greater on Instagram than on Facebook because Instagram has

more multi-homers.

Panel (b) shows that more strongly diminishing returns implies more total surplus loss from sep-

aration. This is both because users dislike the higher ad load and because duplicated ad impressions

generate less value.

6 Conclusion

This paper lays out a new model of competition between digital media platforms with targeted ad-

vertising. The model unifies earlier models of two-sided platforms with other models of advertising

markets with multi-homing users and inefficient duplication. The setup is tailored to the institu-

tional details of digital advertising, which has become increasingly important in recent years. Our

model characterizes the distortions when media platforms are merged versus separated, highlighting

the key empirical parameters for antitrust policy evaluation. We apply the model to the proposed

separation of Facebook and Instagram, presenting evidence that Instagram has more multi-homing

users, the user-side diversion ratio and ad load elasticity are both low, and returns to duplicate ads

could be limited.

We present a variety of counterfactual scenarios with coordinated versus uncoordinated ad

delivery and alternative assumptions for time use, user substitution, ad aversion, overlap, and

diminishing returns. Across these scenarios, the magnitudes of various predictions change. However,

the core qualitative predictions are driven by credible empirical moments and are fairly robust

across alternative specifications and parameter values. Separating Facebook and Instagram would

primarily increase competition for advertisers, not for users, likely increasing ad load and reducing

ad prices, especially on Instagram. This would harm users, benefit advertisers, and generate only

a small percent change in the total surplus that Facebook and Instagram provide.

While we disseminated the working paper and have publicly presented results as the FTC v.

Meta case was in process, the final paper may not be published before the case is decided. We think
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of our contributions as being durable far beyond the life of this case, by offering an empirically

tractable model of media platform competition and demonstrating one policy relevant application

with an extraordinary collection of data.
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Table 1: Facebook and Instagram Use and Overlap

(1) (2)
Facebook Instagram

Share of FB+IG users that use app 0.933 0.586
Share of app users that use other app 0.556 0.885

Notes: This table presents Facebook and Instagram use statistics from the 2020 National Public
Opinion Reference Survey (Pew Research Center 2020).

Table 2: Ad Duplication Experiment Summary Statistics

(1) (2)
Mean Std. Dev.

Initial audience size 1,302 452
Reach (share of initial audience) 0.653 0.544
Frequency (impressions/week) 4.07 1.35
Duplicated share 0.855 0.120
Click-through rate 0.014 0.016
Click-through rate (winsorized at 10th percentile) 0.014 0.016
Cost per click 3.09 4.04
Cost per 1,000 impressions 12.41 4.87

Notes: This table presents summary statistics for the Ad Duplication Experiment. The sample
size is 174 observations.

Table 3: Effects of Duplication on Ad Campaign Click-Through Rates

OLS IV
(1) (2) (3) (4) (5) (6)

Duplicated share -0.270 -0.326 -0.353 -0.262 -0.316 -0.335
(0.044) (0.053) (0.051) (0.045) (0.054) (0.052)

Frequency (impressions/week) -0.073 -0.160 -0.068 -0.150
(0.041) (0.045) (0.040) (0.044)

Reach (share of initial audience) -0.451 -0.443
(0.107) (0.104)

Product-stratum fixed-effects Yes Yes Yes Yes Yes Yes
Observations 174 174 174 174 174 174
Within Adjusted R2 0.184 0.193 0.229 0.184 0.192 0.228
F-test (1st stage), Duplicated share 5,037 3,206 3,348

Notes: This table presents estimates of equation (20), measuring the change in click-through rates
from fully duplicated relative to non-duplicated ad campaigns. Columns (1)–(3) are OLS
estimates, while columns (4)–(6) are IV estimates instrumenting for duplicated share with the
duplicated treatment group indicator. Standard errors are robust and clustered by
product-objective-budget-treatment group, i.e., with three observations per cluster.

41



Table 4: Exogenous Parameters

Parameter Description Value Source

µF Share of FB users that are multi-homers 0.556 NPORS
µI Share of IG users that are multi-homers 0.885 NPORS
bB DA experiment bonus ($/hour) 2.50 DA
αm
F FB ad load (ads/hour) 69.9 Similarweb

αm
I IG ad load (ads/hour) 57.6 Similarweb

cF FB marginal cost of ad load ($/(ad/hour)) 0 Assumption
N Number of Facebook and/or Instagram users 1 Normalization
Am Advertisers × impressions/campaign 1,000 Normalization

Notes: This table presents the exogenous parameters used to construct the distance functions
described in Section 4. “NPORS” refers to the National Public Opinion Reference Survey. “DA”
refers to the Digital Addiction experiment.

Table 5: Empirical Moments

Parameter Description Value SE Source

T̂C
sF Single-homer average FB use (hours/day) 0.720 0.04 FIES

T̂C
mF Multi-homer average FB use (hours/day) 0.685 0.02 FIES

T̂C
sI Single-homer average IG use (hours/day) 0.263 0.04 FIES

T̂C
mI Multi-homer average IG use (hours/day) 0.220 0.0093 FIES

δ̂FI +δ̂IF
2 Average diversion ratio 0.075 0.05 FIES

τ̂BF
T̂C
F

FB bonus response -0.416 0.05 DA

τ̂BI
T̂C
I

IG bonus response -0.411 0.08 DA

̂TAj
j −TC

j

TC
j

Effect of ad removal 0.094 0.019 Brynjolfsson et al. (2024)

λ̂ Duplication effect on ln(CTR) -0.335 0.053 Ad Duplication Experiment
p̂m Average ad price ($/1000 impressions) 10.18 0.351 Birch (2025)

Notes: This table presents the empirical moments used to construct the distance functions
described in Section 4. “FIES” refers to the Facebook and Instagram Election Study. “DA” refers
to the Digital Addiction experiment.
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Table 6: Parameter Estimates

Parameter Description Units Estimate SE

ξsF FB single-homer demand intercept $/hour 6.6 0.74
ξmF FB multi-homer demand intercept $/hour 6.5 0.72
ξsI IG single-homer demand intercept $/hour 6.8 1.52
ξmI IG multi-homer demand intercept $/hour 6.6 0.99
ρ Platform substitution $/hour2 -1.18 0.77
σF FB curvature $/hour2 8.4 0.93
σI IG curvature $/hour2 23.8 4.53
γF FB ad load disutility $/ad 0.0078 0.0018
γI IG ad load disutility $/ad 0.0087 0.0024
κ Return to duplication 0.557 0.10

η Advertiser demand slope $/impression
share of A 0.080 0.01

η0 Advertiser demand intercept share of A -0.765 0.03
cI IG ad load cost $/(ad/hour) 0.0007 0.0001

Notes: This table presents the parameter estimates from the estimation procedure described in
Section 4.
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Figure 1: Distribution of Facebook and Instagram Time Use
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Notes: This figure describes the distribution of Facebook and Instagram time use in the Facebook
and Instagram Election Study passive tracking sample Control groups in the last four weeks of
the treatment period (October 7–November 3). The histograms at the top and right, respectively,
present the marginal distributions of Facebook and Instagram use. Single-homers (consumers with
exactly zero time use on a platform) are plotted separately as values less than zero.
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Figure 2: Daily Facebook and Instagram Use in Facebook Deactivation Experiment
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Notes: This figure presents daily average Facebook and Instagram use in the Deactivation and
Control groups in the Facebook deactivation experiment passive tracking sample from the Facebook
and Instagram Election Study. The dark grey shaded area indicates the Control group’s 7-day
deactivation period, while the light grey shaded area indicates the Deactivation group’s 35-day
additional deactivation period.
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Figure 3: Daily Facebook and Instagram Use in Instagram Deactivation Experiment
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Notes: This figure presents daily average Facebook and Instagram use in the Deactivation and
Control groups in the Instagram deactivation experiment passive tracking sample from the Facebook
and Instagram Election Study. The dark grey shaded area indicates the Control group’s 7-day
deactivation period, while the light grey shaded area indicates the Deactivation group’s 35-day
additional deactivation period.
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Figure 4: Diversion Ratios from Facebook and Instagram Deactivation Experiments
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Notes: This figure presents estimated diversion ratios and 95 percent confidence intervals estimated
from the Facebook and Instagram deactivation experiments in the Facebook and Instagram Election
Study. If τDj

j and τDj
−j , respectively, are the local average treatment effects of fully deactivating

platform j on use of j and −j presented in Appendix Figure A2, these diversion ratios are δj−j =

−τDj
−j /τ

Dj
j . We calculate confidence intervals via the Delta method, assuming zero covariance

between the parameter estimates.
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Figure 5: Digital Addiction Facebook and Instagram Use
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Notes: Panels (a) and (b) present average Facebook and Instagram use in the Digital Addiction
experiment Bonus and Bonus Control groups, limiting the sample to the Limit Control group.
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Figure 6: Effects of Duplication on Click-through Rates
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Notes: This figure shows results from the advertiser duplication loss experiment. Each observation
conditions on a specific ad creative, ad budget, and ad campaign objective, and shows the log dif-
ference in average click-through rates between duplicated and non-duplicated follow-up campaigns.
Click-through rates for duplicated campaigns are impression-weighted averages.

50



Figure 7: Sensitivity to Platform Substitution Parameter

1

2

3

−5.0 −2.5 0.0 2.5 5.0
ρ (baseline = −1.18)

A
d 

lo
ad

 (
ba

se
lin

e 
α j

=
1)

αF, merged eq

αI, merged eq

αF, separated eq

αI, separated eq

(a) Ad Load

−10.0

−7.5

−5.0

−2.5

0.0

−5.0 −2.5 0.0 2.5 5.0
ρ (baseline = −1.18)

To
ta

l s
ur

pl
us

 c
ha

ng
e 

/ b
as

el
in

e 
to

ta
l s

ur
pl

us
 (

%
)

(b) Total Surplus

Notes: This figure presents the equilibrium effects of alternative values of the platform substitution
parameter ρ, holding the other structural parameters constant. Panel (a) presents ad load on each
platform in the merged equilibrium and separated equilibrium with uncoordinated ad delivery,
relative to ad load in the merged equilibrium at baseline parameter values. Panel (b) presents the
effect of separation with uncoordinated ad delivery on total surplus as a share of total surplus in
the merged equilibrium at baseline parameter values.
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Figure 8: Sensitivity to Ad Load Disutility Parameter
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Notes: This figure presents the equilibrium effects of alternative values of the average ad load
disutility parameters γj , holding the other structural parameters constant. To change the average
γj , we change γF and γI proportionally. Panel (a) presents ad load on each platform in the merged
equilibrium and separated equilibrium with uncoordinated ad delivery, relative to ad load in the
merged equilibrium at baseline parameter values. Panel (b) presents the effect of separation with
uncoordinated ad delivery on total surplus as a share of total surplus in the merged equilibrium at
baseline parameter values.
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Figure 9: Sensitivity to Overlap Parameter
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Notes: This figure presents the equilibrium effects of alternative values of overlap, holding the other
structural parameters constant. To change overlap, we vary the number of multi-homers as a share
of total users, and allocate the single-homers to hold constant the ratio of single-homers on Facebook
versus Instagram. Panel (a) presents ad load on each platform in the merged equilibrium and
separated equilibrium with uncoordinated ad delivery, relative to ad load in the merged equilibrium
at baseline parameter values. Panel (b) presents the effect of separation with uncoordinated ad
delivery on total surplus as a share of total surplus in the merged equilibrium at baseline parameter
values.
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Figure 10: Sensitivity to Diminishing Return Parameter
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Notes: This figure presents the equilibrium effects of alternative values of average diminishing
returns ζj , holding the other structural parameters constant. To change the average ζj , we vary κ
on its full range κ ∈ [0, 1]. Panel (a) presents ad load on each platform in the merged equilibrium and
separated equilibrium with uncoordinated ad delivery, relative to ad load in the merged equilibrium
at baseline parameter values. Panel (b) presents the effect of separation with uncoordinated ad
delivery on total surplus as a share of total surplus in the merged equilibrium at baseline parameter
values.
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A Model Appendix

A.1 Alternative to Constant Impressions Per Campaign

This subsection provides an alternative assumption that delivers equivalent equilibrium prices as

the assumption in the text that users have the same optimal impressions per campaign m.

Assumption 4. The optimal number of impressions per campaign for user i and advertiser a is

given by

mia(ωiaπa, pi) =
f · ωiaπa

pi + η · (1 + η0)
,

where f is a constant.

Assumption 4 has sensible comparative statics – the optimal number of impressions is increasing

in profits per impression, and decreasing in price per impression. The specific functional form

ensures that market clearing prices are unchanged relative to their implied value if f = 2m. Under

Assumption 4, the market clearing condition in the merged equilibrium becomes

α · T i(α) =
∑
a

mi · 1[pi ≤ ωiaπa]

= E[mi|ωiaπa ≥ pi] ·A · (1 −Hi(pi))

=
f

2
· 1

pi + η · (1 + η0)
· (pi + η · (1 + η0))A · (1 −Hi(pi))

= m ·A · (1 −Hi(pi)), (36)

where equation (36) is the same as equation (3) under the assumption in the main text.

A.2 Derivation of Marginal Duplication Function

This subsection derives the marginal duplication function in Section 1.2.2.

Proof. By definition,

O′
aj(q) = Pr(i (infra)marginal on −j given q−j given i marginal on j given qj)

= Pr

(
pij′

ωia
≤ πa · (1 − ζj′O

′
aj′)|

pij
ωia

= πa · (1 − ζjO
′
aj)

)

= Pr

pij′

pij
≤

πa

(
1 − ζj′O

′
aj′(q)

)
πa

(
1 − ζjO′

aj(q)
)
 . (37)
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Next, use market clearing to get
pij′
pij

:

αjTij(α) =
∑
a

1
[
πa
(
1 − ζjO

′
aj(q)

)
ωia ≥ pij

]
= A

[
1 −Hi

(
pij

1 − ζjO′
aj(q)

)]
. (38)

Going from the first line to the second implicitly applies Assumption 1 because it says that the

distribution of πaωia does not depend on (for instance) different time usage on different platforms

and can be described by a single person-specific distribution. This follows from independent click-

through rates. Solving for pij gives

pij =
(
1 − ζjO

′
aj(q)

)
H−1

i

(
1 − α̃jTij(α)

Am

)
.

Therefore,

pi,−j

pij
=

(
1 − ζ−jO

′
aj′(q)

)
H−1

i

(
1 − αj′Tij′ (α)

Am

)
(

1 − ζjO′
aj(q)

)
H−1

i

(
1 − αjTij(α)

Am

) . (39)

Substituting (39) into (37), the ratios

(
1−ζj′O

′
aj′ (q)

)
(1−ζjO′

aj(q))
cancel, and we have

O′
aj(q

∗) = O′
aj = Pr

H−1
i

(
1 − αj′Tij′ (α)

Am

)
H−1

i

(
1 − αjTij(α)

Am

) ≤ 1


= Pr[αjTij(α) ≤ αj′Tij′(α)]

=

∑
i∈Uj

1[αjTij(α) ≤ αj′Tij′(α)]

Nj
. (40)

Going from the first to the second line to the second uses the fact that H−1
i is monotone increasing.

The third line follows by definition and gives the expression in the text.

A.3 Duplication Loss with Imperfectly Correlated CTR Predictions

This appendix section re-derives O′
aj after relaxing the main text assumption that separated plat-

forms predict the same click-through rates for each user. For expositional clarity, we will use Õ′
aj

to refer to marginal duplication derived under the assumption that platform’s CTR predictions are

imperfectly correlated.

Let ωiaj be platform j’s estimation of ωia. Decompose ωiaj = ωiauij , where uij ≥ 0 and E[uij ] =

1, so that (i) platforms are right on average; and (ii) platform under- or over-estimation of CTRs

applies equally to all advertisers. Further assume that uij is distributed iid with uij ⊥ ωia, Tij , ζi.
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Following the same steps as in Section A.2,

Õ′
aj(q) = Pr

(
pij′

ωiauij′
≤ πa · (1 − ζj′Õ

′
aj′)|

pij
ωiauij

= πa · (1 − ζjÕ
′
aj)

)
(41)

= Pr

pij′

pij
≤

uij′

uij

πa

(
1 − ζj′Õ

′
aj′(q)

)
πa

(
1 − ζjÕ′

aj(q)
)
 . (42)

Market clearing now implies that

αjTij(α) =
∑
a

1
[
πa(1 − ζjÕ

′
aj(q))ωiaj ≥ pij

]
(43)

=
∑
a

1
[
πa(1 − ζjÕ

′
aj(q))ωia ≥ pij/uij

]
(44)

= Am ·

[
1 −Hi

(
pij/uij

1 − ζjÕ′
aj(q)

)]
. (45)

Thus,

pij/uij =
(

1 − ζjÕ
′
aj(q)

)
H−1

i

(
1 − αjTij(α)

Am

)
, (46)

and hence

pij′

pij
=

uij
uij′

(
1 − ζj′Õ

′
aj′(q)

)
H−1

i

(
1 − αj′Tij′ (α)

Am

)
(

1 − ζjÕ′(q)
)
H−1

i

(
1 − αjTij(α)

Am

) . (47)

Putting everything together,

Õ′
aj(q

∗) = Pr

H−1
i

(
1 − αj′Tij′ (α)

Am

)
H−1

i

(
1 − αjTij(α)

Am

) ≤
u2ij′

u2ij

 (48)

= Pr

(
1 + η0 −

αj′Tij′ (α)

Am

1 + η0 − αjTij(α)
Am

≤
u2ij′

u2ij

)
(49)

= Pr

(
αjTij(α) ≤ Am ·

(
1 −

u2j
u2j′

)
(1 + η0) +

u2j
u2j′

αj′Tij′(α)

)
. (50)

With
u2
j

u2
j′
∼ Uj ,

13 we can rewrite Õ′
aj as

Õ′
aj =

ˆ
z

Pr
(
αjTij(α) ≤ Am · (1 + η0)(1 − z) + z · αj′Tij′(α)

)
dUj(z) (51)

=
∑
i∈Uj

ˆ
z

1
[
z−1αjTij(α) ≤ Am · (1 + η0)(z − 1) + αj′Tij′(α)

]
Nj

dUj(z). (52)

13For example, if u2
j are distributed Γ(a, 1), then their ratio is a Beta prime distribution with scale and location a.
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To compare Õ′
aj and O′

aj , fix i and z and consider three cases.

First, when z = 1, the argument in the integral in equation (52) coincides exactly with O′
aj for

all i.

Second, when z < 1, the argument in the integral is higher than O′
aj for all i. The intuition is

that z < 1 implies platform j assesses i’s click-through rate as lower than platform j′ does. The

advertiser allocated to the marginal ad slot on j is more likely to have been given a slot on j′

conditional on αj′Tij′ , increasing overlap.

Finally, when z > 1, the argument in the integral is lower than O′
aj for all i. The intuition is

the opposite of the previous paragraph. That z > 1 implies platform j assesses i’s click-through

rate as higher than platform j′ does. The advertiser allocated to the marginal ad slot on j is less

likely to have been given a slot on j′ conditional on αj′Tij′ , decreasing overlap.

The net effect of these two forces is uncertain, and depends both on the joint distribution of

(Tij , Tij′) and Uj .

Discussion. The above analysis highlights two key insights. First, marginal duplication does

not monotonically diminish or increase with lower correlation. Thus, the baseline assumption of

perfect correlation doesn’t systematically distort overlap in one direction or another. Imperfect

correlation does affect the “business stealing” incentive, as shown by the fact that αj is multiplied

by z−1. This may make the incentive stronger or weaker depending on the distribution of Uj and

the joint distribution of (Tij , Tij′).

Second, the result that imperfect correlation has ambiguous effects on marginal overlap does

not directly map to welfare effects. The welfare effects of imperfect correlation, however, are also

uncertain. If platforms are separated, can’t share data, and hence have more coarse targeting

predictions, there are two offsetting effects. On the one hand, total inefficient duplication may be

lower, which is good for welfare. On the other hand, ads are less well targeted on average, which

is bad for welfare. The net effect is ambiguous. So even if the assumption of perfect correlation

overstates the welfare effect of duplication loss, it doesn’t necessarily overstate the advertiser-side

welfare loss from separation.

A.4 Reaction Functions

This appendix presents additional intuition on strategic incentives as the two platforms compete.

We do this primarily with reaction functions computed numerically at example parameter values.

To simplify the analysis, we restrict the model from the main text in two ways. First, we assume

time on platform T i is exogenous but not necessarily homogeneous. Second, we assume ζj = 1,

so that duplicated impressions are fully wasted, and that c = 0. We first present the first-order

conditions before illustrating them using numerical examples. Derivations are in Appendix A.5.

A.4.1 First-Order Conditions

Re-arranging equation (13), the merged platform chooses ad load to satisfy

6
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αe,m
j =

∑
i α−j · Ti,−j · ∂pi

∂αj
+ Tij · pi

−
∑

i Tij · ∂pi
∂αj

(53)

where
∂pi
∂αj

= − η

Am
· Tij .

Rearranging equation (16), the separated platforms choose ad load to satisfy

αe,s
j =

∑
i∈Uj

Tij · pij
−
∑

i∈Uj
Tij · ∂pij

∂αj

. (54)

A.4.2 Numerical Examples

We explore how the above forces impact ad load in the separated relative to combined equilibrium

through several numerical examples. We parameterize the distribution of time use with a measure

M of multi-homers with Tmi ∼ N
(
1
2 ,ΣT

)
, and a measure Nj of single-homers Tsi = 1. Unless

otherwise specified, we set ζj = m = 1 and the remaining model parameters to their estimated

value from Section 4.

Example 1: Partial user overlap (with coordinated ad delivery). We first focus on how

partial user overlap impacts the magnitude of the advertiser-side Cournot externality when sepa-

rated platforms can coordinate to avoid duplication. We set ΣT = 0, so that multi-homers split

one unit of time equally across platforms.

The merged equilibrium solution is standard linear Cournot: αe,m
j = 1

2Am·(1+η0). In separated

equilibrium, reaction functions are:

αe,s,i
j (α−j) =

2 − µj

(4 − 3µj)
Am · (1 + η0) −

1

2

µj

(4 − 3µj)
α−j . (55)

When there is no overlap (µj = 0), each separated platform behaves as a monopolist. As overlap

increases, separated platforms respond more to their rival’s actions, as they have a greater impact

on revenue, and internalize less the price impact of increased ad load. Appendix Section A.5.1

derives a closed-form expression for separated equilibrium ad load, and shows that the percent

change relative to the merged equilibrium only depends on overlap statistics and is independent of

ad demand parameters.

Figure A1, panel (a) plots reaction functions and equilibria in to show these forces concretely.

Facebook reaction functions to Instagram ad load are plotted horizontally, and Instagram reaction

functions to Facebook ad load are plotted vertically. Equilibria are plotted with black dots where

the reaction functions intersect. Black lines plot vertical reaction functions when µj = 0, because

platforms ignore their rival’s actions. The blue and orange solid lines plot reaction functions

when µj = 1 for both platforms, indicating a 40% increase in ad load relative to the monopolist

7
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equilibrium. The dashed lines plot reaction functions given empirically-observed µj , with µIG >

µFB. Since Instagram has more overlap than Facebook, it will internalize less of the impact of

increased ad load on equilibrium prices, and hence increase ad load by much more than Facebook.

Example 2: Uncoordinated ad delivery (with full user overlap). We next consider a

separated equilibrium where platforms cannot coordinate to avoid duplication. To focus on the role

of duplication, we assume all users are multi-homers with heterogeneous time use parameterized

by ΣT = diag
(
σ2, σ2

)
. Heterogeneous time use ensures that the marginal duplication function is

continuous and differentiable.

Reaction functions no longer have a closed form, but are given by

αe,s,i
j (α−j) = arg max

αj

(
1 −O′

aj

)
·η

(∑
i

αjTij ·
(

1 + η0 −
αjTij

Am

))
, (56)

This expression comes from substituting cj = 0, Tij(α) = Tij , and the formula for separated

equilibrium prices in equation (8) into problem (15), where O′
aj is given by equation (9). Rival

ad load α−j only enters the expression through marginal duplication O′
aj . This makes clear how

duplication affects revenue from ad prices directly and strategically through the business stealing

effect. Moreover, the variance of time use, controlled by σ2, will alter separated platform incentives.

When σ2 is very low, platforms can precisely affect marginal duplication and user prices through

changes in ad load, amplifying strategic differences relative to the merged equilibrium. When σ2

is very high, changes in ad load have little impact on marginal duplication, dampening differences

relative to the merged equilibrium.

Figure A1, panel (b) illustrates these points. The solid blue and orange lines plot Facebook and

Instagram reaction functions when σ2 is relatively low. Ad load increases significantly. Because

platforms have fine control over marginal duplication, the business stealing effect is strong, making

choice of ad load a strategic complement. The dashed lines plot reaction functions when σ2 is high.

Ad load still shifts out due to the direct effect. However, platforms have much less control over

marginal duplication through choice of ad load, severely dampening the business stealing effect.

Example 3: Uncoordinated ad delivery and partial user overlap together. Finally,

we consider the impact of uncoordinated ad delivery and partial user overlap jointly. Reaction

functions are the same as in equation (56). However, the value of O′
aj changes because O′

aj is lower

when a lower fraction of users are multi-homers. To see this, note that:

O′
aj =

∑
i∈Um

1 [αjTij ≤ α−jTi,−j ]

Nj
(57)

= µj · Pr (αjTij ≤ α−jTi,−j |i ∈ Um) . (58)

The first line follows because Ti,−j = 0 implies the numerator is zero for i /∈ Um. The second line

means that a lower fraction of multi-homers, and hence lower µj , implies lower marginal overlap,

8
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holding fixed α and the time use distribution.

Figure A1, panel (c) plots the resulting reaction functions, where all reaction functions use

the empirical overlap µj on Facebook and Instagram. First, partial overlap (µj < 1) dampens

the impact of duplication, since each platform has a user population for whom strategic incentives

do not change relative to the merged equilibrium. Second, the business stealing motive appears

stronger for Instagram than Facebook. This is because Instagram has greater overlap, magnifying

the returns to business stealing. Finally, higher time use variance again dampens the business

stealing effect, although to a lesser degree as it is already dampened by overlap.

Summary of numerical examples. With exogenous but heterogeneous time use, separating

platforms leads to a greater increase in ad load when user overlap across platforms is greater.

First, higher overlap leads merged platforms to constrain ad load by more relative to separated

platforms, which do not consider the impact of lower ad prices on their rival’s revenue. Second,

if platforms can’t coordinate to avoid inefficient duplication, ad load increases by even more in

the separated equilibrium due to the “business stealing” incentive to increase ad load and reduce

marginal duplication.

A.4.3 Possibility of Strategic Complementarity

Section A.4.2 gives examples where business stealing changes ad load from strategic substitutes

into strategic complements: reaction functions are globally downwards-sloping in Figure A1, panel

(a) with coordinated ad delivery, but can be upwards sloping in panel (c) with uncoordinated

ad delivery. The following proposition shows formally that optimal ad loads are always strategic

substitutes when ad delivery is coordinated but may be strategic complements when ad delivery is

uncoordinated.

Proposition 1 (Advertiser-side strategic complementarity). Suppose that time use T i is exogenous

with ∂T i
∂αj

= 0 and a well-defined distribution for
Tij

Ti,−j
, O′

aj is twice differentiable, Assumptions 1

and 2 hold, c = 0, and ζj = 1. Then in the separated equilibrium in Problem (15), ad load choices

are strategic substitutes if ad delivery is coordinated, and either strategic complements or substitutes

if ad delivery is uncoordinated.
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Figure A1: Key Advertiser-Side Forces: Numerical Examples
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(c) Partial Overlap and Duplication Together

Notes: This figure presents numerical examples described in Section A.4.2. Panel (a) plots reaction
functions in an example with partial overlap but no duplication in separated equilibrium. Panel (b)
plots reaction functions in an example with full overlap and duplication. Panel (c) plots reaction
functions in an example with partial overlap and duplication.

A.5 Derivations for Section A.4

This subsection derives expressions in Section A.4.
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Derivation of equation (53). The monopolist problem is

αe,m = arg max
α

∑
i

pi ·α · T i, (59)

where the only difference relative to equation (12) is that time use does not depend on α as it is

exogenous and c = 0. The first-order conditions are

0 =
∂

∂αj

[∑
i

pi ·α · T i

]

=
∑
i

α · T i ·
∂pi
∂αj

+ pi · Tij . (60)

Rearranging:

αj = −
∑

i α−j · Ti,−j · ∂pi
∂αj

+ Tij · pi∑
i Tij · ∂pi

∂αj

where
∂pi
∂αj

= − η

Am
· Tij , (61)

and where the value of ∂pi
∂αj

comes from differentiating equation (4) with respect to αj and applying

the inverse function rule.

Derivation of equation (54). The separated platform problem is

αe,s,i
j = arg max

αj

∑
i∈Uj

αj · Tij · pij (62)

The first-order condition is

0 =
∑
i∈Uj

αj · Tij ·
∂pij
∂αj

+ Tij · pij . (63)

Rearranging gives the expression:

αj = −
∑

i∈Uj
Tij · pij∑

i∈Uj
Tij · ∂pi

∂αj

, (64)

where
∂pij
∂αj

= −
(
1 −O′

aj

)
· η

Am
· Tij −

pij(
1 −O′

aj

) ∂O′
aj

∂αj
, (65)

which gives the expressions in the text.

Proof of Proposition 1. To show ad load choices are strategic substitutes in Problem (16) with

coordinated ad delivery, first note that given Assumptions 1 and 2,

∂pi
∂αj

= − η

Am
· Tij =⇒ ∂2pi

∂α−j∂αj
= 0. (66)

Differentiate equation (54) with respect to α−j and substitute pij = pi to reflect coordinated ad
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delivery:

∂αe,s,i
j

∂α−j
= −

∑
i∈Uj

Tij · ∂pi
∂α−j∑

i∈Uj
Tij · ∂pi

∂αj

= −
∑

i∈Uj
TijTi,−j∑

i∈Uj
T 2
ij

. (67)

This proves that
∂αe,s,i

j

∂α−j
≤ 0, meaning choices of ad load are strategic substitutes.

To show that ad load choices can be strategic complements in Problem (15) with uncoordinated

ad delivery, define the distribution of Tij/Ti,−j as T−j and note that

O′
aj = Pr (αjTij ≤ α−jTi,−j) = T−j (α−j/αj) . (68)

Therefore,
∂O′

aj

∂α−j
= T ′

−j

(
α−j

αj

)
· α−1

j ≥ 0,
∂O′

aj

∂αj
= −T ′

−j

(
α−j

αj

)
· α−j

α2
j

≤ 0. (69)

Moreover,
∂O′

aj

∂α−j∂αj
= −T ′

−j

(
α−j

αj

)
· 1

α2
j

− α−j

α3
j

· T ′′
−j

(
α−j

αj

)
, (70)

which has ambiguous sign. Differentiate equation (54) with respect to α−j in the case with unco-

ordinated ad delivery (with pij separate on each platform and given by equation (8)):

∂αe,s,i
j

∂α−j
= −

∑
i∈Uj

Tij · pij(∑
i∈Uj

Tij · ∂pij
∂αj

)2 ·
∑
i∈Uj

Tij ·
∂2pij

∂α−j∂αj
. (71)

Strategic complementarity occurs when
∂2pij

∂α−j∂αj
< 0, and strategic substitutes when

∂2pij
∂α−j∂αj

> 0.

Moreover,

∂2pij
∂α−j∂αj

=
∂O′

aj

∂α−j
· η

Am
Tij +

pij(
1 −O′

aj

)2 ∂O′
aj

∂α−j

∂O′
aj

∂αj

− pij(
1 −O′

aj(α
e,s,d

) ∂2O′
aj

∂α−j∂αj
. (72)

The first term is positive because
∂O′

aj

∂α−j
is. The second term is negative because

∂O′
aj

∂αj
is. The third

term has a sign depending on the sign of
∂2O′

aj

∂α−j∂αj
, which is ambiguous and depends on the shape of

the pdf of Tij/Ti,−j . Overall, it is thus possible that
∂2pij

∂α−j∂αj
< 0, implying that

∂αe,s,i
j

∂α−j
< 0 (making

ad load choices strategic complements).

Remark. Proposition 1 also holds with arbitrary c and ζi that satisfy Assumption 3, where the
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proof focuses on the restricted case for notational clarity.

A.5.1 Derivations for Section A.4.2

This subsection derives expressions in Section A.4.2. Throughout, we use the notation M and Nj

to refer to the number of multi-homers and users on platform j, respectively, satisfying µj = M/Nj

and M +
∑

j(Nj −M) = N .

Derivation of monopoly ad load. Monopoly revenue is

Rm(α) = η ·

M

2
(α1 + α2) ·

(
1 + η0 −

α1 + α2

2Am

)
+
∑
j

(Nj −M)αj

(
1 + η0 −

αj

Am

) . (73)

The first-order condition with respect to αj is

0 =
M

2

((
1 + η0 −

αj + α−j

Am

)
+ (Nj −M)

(
1 + η0 − 2

αj

Am

))
=

αj

Am
(3M − 4Nj) + (1 + η0) (2Nj −M) − O

A
α−j . (74)

Therefore,

αj =
2Nj −M

4Nj − 3M
Am(1 + η0) −

M

4Nj − 3M
α−j . (75)

Substituting in for α−j and simplifying gives

αj =

(
(2Nj −M) (4N−j − 3M) −M(2N−j −M)

(4Nj − 3M) · (4N−j − 3M) −M2

)
Am(1 + η0). (76)

The numerator simplifies to 8NjN−j − 6M(Nj + N−j) + 4M2 and the denominator simplifies to

2 ·
(
8NjN−j − 6M(Nj + N−j) + 4M2

)
. Therefore, the expression becomes:

αe,m
j =

1

2
Am(1 + η0), (77)

as reported in the text.

Derivation of Equation (55). Separated platform revenue is

Rs
j(α) = η ·

(
M

2
αj ·

(
1 + η0 −

α1 + α2

2Am

)
+ (Nj −M)αj

(
1 + η0 −

αj

Am

))
. (78)

The first-order condition is

0 =
M

2

(
1 + η0 −

αj + α−j

2Am
− αj

2Am

)
+ (Nj −M)

(
1 + η0 − 2

αj

Am

)
=

αj

Am
(3M − 4Nj) + (1 + η0) (2Nj −M) − M

Am
α−j . (79)
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Therefore,

αe,s,i
j (α−j) =

2Nj −M

4Nj − 3M
Am(1 + η0) −

M

(4Nj − 3M)
α−j

=
2 − µj

4 − 3µj
Am(1 + η0) −

µj

4 − 3µj
α−j , (80)

where we factor out Nj from the numerator and denominator to express in terms of µj . Substituting

for α−j and simplifying yields:

αe,s,i
j =

(
(2Nj −M) (4N−j − 3M) −O(2N−j −M)

(4Nj − 3M) · (4N−j − 3M) −M2

)
Am(1 + η0). (81)

Percent change in ad load only depends on overlap statistics. Using equations (77) and (81), the

percent increase in ad load in the separated equilibrium is

αe,s,i
j

αe,m
j

− 1 = 2 ·
(

(2Nj −M) (4N−j − 3M) −M(2N−j −M)

(4Nj − 3M) · (4N−j − 3M) −M2

)
− 1

= 2 ·
(

(2 − µj) (4 − 3µ−j) − µj(2 − µ−j)

(4 − 3µj) · (4 − 3µ−j) − µjµ−j

)
− 1. (82)

This only depends on overlap statistics, proving the claim in the text.

A.6 Derivations for Section 1.3

This section analyzes the full model under various ownership structures. Throughout, we will apply

assumptions 1 and 2.

A.6.1 Social Planner Benchmark

The analysis follows each point in Section 1.3.1. The planner chooses

αo = arg max
α

∑
i

U∗
i (T (α), n;α) +

∑
i

Am ·
(πω)maxˆ

x=pi(α)

xdH(x) − c ·α. (83)

The first-order condition is

0 =
∑
i

∂U∗
i (·;α)

∂αj
−
∑
i

Am

η
· pi (α) · ∂pi (α)

∂αj
− cj . (84)

Since
∂pi (α)

∂αj
= − η

Am
·
[
Tij + αj

∂Tij

∂αj
+ α−j

∂Ti,−j

∂αj

]
, (85)
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the FOC becomes

0 =
∑
i

∂U∗
i (·;α)

∂αj
−
∑
i

pi(α) ·
[
Tij + αj

∂Tij

∂αj
+ α−j

∂Ti,−j

∂αj

]
− cj . (86)

Solving for αj gives

αo
j =

∑
i
∂U∗

i (·;α)
∂αj

+
∑

i pi(α) ·
(
Tij + α−j

∂Ti,−j

∂αj

)
− cj

−
∑

i pi(α) · ∂Tij

∂αj

. (87)

A.6.2 Merged Platform Solution

The problem is:

max
α

∑
i

pi(α) ·α · T i(α) − c ·α. (88)

The first-order conditions are

0 =
∑
i

[
∂pi
∂αj

·α · T i(α) + pi(α) · Tij(α) + pi(α) ·α · ∂T i(α)

∂αj

]
− cj . (89)

Solving for αj gives

αm
j =

∑
i
∂pi
∂αj

·α · T i(α) +
∑

i pi(α) ·
(
Tij(α) + α−j · ∂Ti,−j

∂αj
(α)
)
− cj

−
∑

i pi(α) · ∂Tij

∂αj
(α)

. (90)

A.6.3 Separated Platform Solution with Coordinated Ad Delivery

The problem is

max
αj

∑
i∈Uj

pi(α) · αj · Tij(α) − cjαj . (91)

The first-order conditions are

0 =
∑
i

∂pi
∂αj

· αj · Tij(α) + pi(α) · Tij + pi(α) · αj ·
∂Tij

∂αj
(α) − cj . (92)

Solving for αj gives

αs,c
j =

∑
i∈Uj

∂pi
∂αj

· αj · Tij(α) +
∑

i∈Uj
pi(α) · Tij − cj

−
∑

i∈Uj
pi(α) · ∂Tij

∂αj
(α)

. (93)

This differs from equation (16) in the main text because rather than depending on platform-

specific prices pij , it depends on an integrated price pi. This means duplication loss does not impact

ad load. The difference in incentives in the separated versus merged equilibrium still depends on

user overlap, however. When all users are single-homers, the separated equilibrium is identical to
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the merged equilibrium. As the share of multi-homers increases, two differences emerge. First, as

in Section A.4, the advertiser-side Cournot externality increases, which increases ad load in the

separated equilibrium. Second, if platforms are substitutes, user diversion reduces the incentive to

withhold ad load in the merged equilibrium relative to the separated equilibrium, which increases

ad load in the merged equilibrium relative to the separated equilibrium. In general, ad load can

be higher or lower than in the merged equilibrium, depending on overlap, user diversion, and price

elasticity.

A.6.4 Separated Platform Solution with Uncoordinated Ad Delivery

The problem is

max
αj

∑
i∈Uj

pij(α) · αj · Tij(α) − cjαj . (94)

Taking the first-order condition and solving for αj gives

αj =

∑
i∈Uj

∂pij
∂αj

· αj · Tij(α) +
∑

i∈Uj
pij(α) · Tij − cj

−
∑

i∈Uj
pij(α) · ∂Tij

∂αj
(α)

, (95)

where, assuming that
∂ζj
∂αj

≈ 0,

∂pij
∂αj

≈ −
(
1 −O′

aj

)
·
η ·
(
Tij + αj

∂Tij(α)
∂αj

)
Am

− pijζj(
1 − ζjO′

aj

) ∂O′
aj

∂αj
. (96)

The numerator in equation (95) captures both the advertiser-side Cournot effect and the business

stealing effect, both of which increase ad load relative to the merged equilibrium. The absence of
∂Ti,−j

∂αj
in the numerator reflects the same user-diversion force expressed in the previous sub-section.

This implies that ad load may be higher or lower than the combined equilibrium social optimum.

However, since the separated equilibrium now has inefficiently duplicated ad impressions, com-

paring ad load versus the social planner benchmark is not sufficient to make welfare judgements.

For example, even if ad load were identical in the separated platform equilibrium with duplication

as in Equation (87), social welfare would be lower in the separated equilibrium because some ads

would be inefficiently duplicated, lowering advertiser surplus. See Section 5 for details.
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B Ad Duplication Experiment Appendix

B.1 Ad Selection and Ad Design

We developed 15 creatives for distinct products spanning five product categories. We selected

products and categories to be representative of typical ads on Facebook and Instagram. To do so,

we first picked five top product categories and the top three advertisers within each category by

ad spending from the 2024 SensorTower Digital Market Index (SensorTower 2024). We identified

each resulting advertiser’s best-selling product and created ads that linked to pages promoting or

allowing users to purchase that product.14 To promote our ads, we created a “product picks”

Facebook page for each product category. Such third-party product recommendations are allowed

by Meta’s terms of use.

Our five product categories were shopping, consumer packaged goods, media and entertainment,

health and wellness, and food and dining. The Facebook pages used to promote products in each

category were called, respectively, “The Shopping Spot,” “Everyday Care Essentials,” “Media

Roundup,” “Health and Wellness Essentials,” and “Culinary Crave.” These pages are public and

viewable on Facebook.15 Ad creatives used public-source advertising materials to approximate

campaigns consumers would likely see. Where relevant, ads link to a site to purchase the advertised

product, and otherwise link to a site describing the product in more detail.

Table A1 summarizes the companies, products, and creatives used within each category.

B.2 Experimental Design Details

For each ad creative, we first recruited 8 audiences to target in campaigns. To recruit audiences,

we ran campaigns targeting US adults aged 18–65. To delineate audiences for retargeting, we used

Meta’s “Custom Audiences” feature. This feature allows advertisers to identify a set of users based

on behaviors or characteristics, such as whether they have previously interacted with another ad

or visited an advertisers’ website. We used a feature that builds an audience based on users who

view at least 25% of a video ad. We made video ads using the 3-second GIFs of the creatives

displayed in Table A1, such that users for whom the ad is displayed for 0.75 seconds became part

of an audience. For each audience, we excluded users from being targeted once they became part

of any of the other audiences to ensure that the eight audiences recruited for each ad were non-

overlapping. The campaigns used to recruit custom audiences were run over four days in January

2025, with a daily budget of $2.

14In August 2024, we used online sources to identify the top selling product for each company over the past month.
When we could not identify clear top selling products, we identified a product recently the subject of a major ad
campaign. We used some discretion to ensure the advertised product was associated with the target company – for
example, although the top selling product on Amazon in July 2024 was the Stanley Cup water bottle, we selected
the Amazon Fire TV stick (second most popular).

15The Facebook page IDs are: 61565619873336 (Shopping Spot), 61565078579057 (Everyday Care Essentials),
61564728493259 (Media Roundup), 61565433650990 (Health and Wellness Essentials), and 61565407492274 (Culinary
Crave).
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We then targeted these audiences with follow-up campaigns that ran for one week and started af-

ter the initial recruitment campaign began. Across audiences, we experimentally varied ad intensity,

ad frequency, and campaign duplication. We designated 4 audiences to target with non-duplicated

campaigns, and the remaining 4 to target with duplicated campaigns. Audiences assigned to the

non-duplicated condition were targeted by one follow-up campaign. Audiences assigned to the

duplicated condition were targeted by two identical follow-up campaigns to induce diminishing

returns.

The four audiences within the non-duplicated and duplicated conditions were assigned to one of

four treatments consisting of a daily campaign budget and campaign objective. These conditions

were: (i) “low spend, clicks objective”, (iii) “low spend, reach objective”, (iv) “high spend, clicks

objective”, and (v) “high spend, reach objective.” Low and high spend campaigns received a daily

budget of $2 and $12 per day, respectively. Campaigns with a clicks objective were given the Meta

performance goal of maximizing the number of link clicks, wheres campaigns with a reach objective

were given the Meta performance goal of maximizing daily unique reach.

For each campaign, we measured the click-through rate, number of impressions, and campaign

reach. We also gathered Meta’s estimates of the combined unique reach of campaigns assigned

to the duplicated condition, which, along with data on unique reach of each individual campaign,

allows us to back out the fraction of a campaign audience that is impressed by both duplicated

campaigns. We estimate campaign frequency as the ratio of number of impressions and reach,

and follow-up campaign reach as the fraction of the initial audience impressed by the follow-up

campaign.
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Table A1: Duplication Loss Experiment Creatives

(a) Shopping Ads

Company Amazon Temu Shein

Product Fire Stick Shopping Shopping

Ad creative

(b) Consumer Packaged Goods Ads

Company Proctor & Gamble Unilever Nestle

Product Tide Pods Dove Nescafe

Ad creative

(c) Media and Entertainment Ads

Company Disney NBC Universal Amazon

Product Disney+ Peacock Amazon Prime

Ad creative
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Table A1: Duplication Loss Experiment Creatives, Continued

(d) Health and Wellness Ads

Company L’Oreal Estee Lauder Olay

Product Revitalift moisturizer Night repair serum Regenerist moisturizer

Ad creative

(e) Food and Dining Services Ads

Company Sonic McDonald’s Wendy’s

Product Sonic’s $1.99 menu $5 meal deal Biggie Bag

Ad creative

Notes: This figure describes top companies and products used to develop ad creatives for the
duplication experiment. Screen captures of ad creatives are for the video ads used to initially
recruit custom audiences, as described in Section B.2, but are identical to the static ads used for
follow-up campaigns.
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C Model-Free Empirical Evidence Appendix

C.1 Facebook and Instagram Election Study

Figure A2: Effects of Facebook or Instagram Deactivation on App Use
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Notes: This figure presents the local average treatment effects of deactivating Facebook or Insta-
gram on app time use in the Facebook and Instagram Election Study passive tracking samples, as
estimated by Allcott, Kiefer, and Tangkitvanich (2025) using equation (18).
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Figure A3: Effects of Facebook or Instagram Deactivation on App Use (Primary Sam-
ples)
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Notes: This figure presents the local average treatment effects of deactivating Facebook or Insta-
gram on app time use in the Facebook and Instagram Election Study passive tracking samples, as
estimated by Allcott, Kiefer, and Tangkitvanich (2025) using equation (18). This figure parallels
figure A2, except that it is based on estimates from the “primary sample,” which includes only
people who used the focal platform for more than 15 minutes per day during the baseline period.
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Figure A4: Diversion Ratios from Facebook and Instagram Deactivation Experiments
(Primary Samples)
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Notes: This figure presents estimated diversion ratios and 95 percent confidence intervals estimated
from the Facebook and Instagram deactivation experiments in the Facebook and Instagram Election
Study. This figure parallels figure 4, except that it is based on estimates from the “primary sample,”
which includes only people who used the focal platform for more than 15 minutes per day during
the baseline period. If τDj

j and τDj
−j , respectively, are the local average treatment effects of fully

deactivating platform j on use of j and −j presented in Appendix Figure A3, these diversion
ratios are δj−j = −τDj

−j /τ
Dj
j . We calculate confidence intervals via the Delta method, assuming zero

covariance between the parameter estimates.
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C.2 Digital Addiction Experiment

Figure A5: Effects of Screen Time Bonus on Facebook and Instagram Use by Week
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Notes: This figure presents the effects of the Digital Addiction experiment Screen Time Bonus on
Facebook and Instagram use. The grey shaded region indicates the 20-day period when the Bonus
group was being paid $2.50 per hour to reduce use of Facebook, Instagram, Twitter, Snapchat, web
browsers, and YouTube.
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Table A2: Control Group Use and Effect of Screen Time Bonus in Digital Addiction
Experiment

Facebook use
(minutes/day)

Instagram use
(minutes/day)

(1) (2) (3) (4)

Constant 63.81 10.82 20.36 4.61
(2.66) (2.01) (1.46) (0.91)

1(Bonus group) -26.57 -8.36
(2.95) (1.48)

Baseline Facebook use (minutes/day) 0.76
(0.03)

Baseline Instagram use (minutes/day) 0.70
(0.04)

Observations 500 669 407 540
R2 0.70 0.73

Notes: This table uses data from the Digital Addiction experiment. Columns 1 and 2 include only
people with positive Facebook use before the bonus period; columns 3 and 4 include only people
with positive Instagram use before the bonus period. Columns 1 and 3 limit the samples to the
Control groups, presenting estimates of average Control group use during the bonus period.
Columns 2 and 4 present estimates of equation (19), a regression of bonus period average
Facebook or Instagram use on the Bonus group indicator, baseline focal app use, and a constant.
Standard errors clustered at the user level are in parentheses. We jointly estimate these four
regressions using Seemingly Unrelated Regression to recover the covariance matrix for the
parameter estimates.

C.3 Ad Duplication Experiment

Table A3: Ad Duplication Experiment Summary Statistics by Treatment Group

(1) (2) (3) (4)
High spend

clicks
High spend

reach
Low spend

clicks
Low spend

reach

Frequency (impressions/week) 5.27 4.61 3.08 3.30
Reach (share of initial audience) 1.04 0.840 0.376 0.548
Cost per 1,000 impressions 14.28 16.19 11.52 7.74

Notes: This table presents average frequency, reach, and CPM for follow-up campaigns in the Ad
Duplication Experiment, depending on campaign objective (clicks versus reach) and budget (high
versus low spend).
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Table A4: Alternative Estimates of Effects of Duplication on Ad Campaign Click-
Through Rates

OLS IV
(1) (2) (3) (4) (5) (6)

Duplicated share -0.265 -0.352 -0.348 -0.237 -0.321 -0.317
(0.063) (0.080) (0.082) (0.065) (0.080) (0.082)

Frequency (impressions/week) -0.108 -0.102 -0.096 -0.085
(0.054) (0.059) (0.052) (0.059)

Reach (share of initial audience) 0.019 0.036
(0.146) (0.147)

Product-stratum fixed-effects Yes Yes Yes Yes Yes Yes
Observations 176 176 176 176 176 176
Within Adjusted R2 0.100 0.118 0.110 0.099 0.117 0.109
F-test (1st stage), Duplicated share 3,519 2,497 3,261

Notes: This table presents estimates of equation (20), measuring the change in click-through rates
from fully duplicated relative to non-duplicated ad campaigns. Columns (1)–(3) are OLS
estimates, while columns (4)–(6) are IV estimates instrumenting for Duplicated share with the
duplicated treatment group indicator. Standard errors are robust and clustered by
product-objective-budget-treatment group, i.e., with three observations per cluster. This table is
the same as Table 3, except that here we do not winsorize CTRs at the 10th percentile or drop
the three campaigns where the duplicated campaigns had less than 50 percent overlap. One
campaign had zero CTR and thus undefined ln(CTR), so when we do not winsorize, we drop that
observation, leaving 176 observations.
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Table A5: Effects of Duplication on Ad Campaign Click-Through Rates: Heterogeneity

IV
(1) (2) (3)

Duplicated share -0.238 -0.279 -0.310
(0.070) (0.072) (0.068)

Duplicated share x High spend treatment -0.045 -0.090 -0.060
(0.091) (0.091) (0.088)

Frequency (impressions/week) -0.080 -0.158
(0.041) (0.045)

Reach (share of initial audience) -0.438
(0.103)

Product-stratum fixed-effects Yes Yes Yes
Observations 174 174 174
Within Adjusted R2 0.177 0.189 0.224
F-test (1st stage), Duplicated share 3,181 2,091 2,355
F-test (1st stage), Duplicated share x High spend treatment 3,773 2,712 3,915

Notes: This table presents estimates of equation (20), measuring the change in click-through rates
from fully duplicated relative to non-duplicated ad campaigns. Columns (1)–(3) are IV estimates
instrumenting for Duplicated share and Duplicated share x High spend treatment with the
duplicated treatment group indicator and its interaction with an indicator for a campaign
assigned to a high daily budget treatment. Standard errors are robust and clustered by
product-objective-budget-treatment group, i.e., with three observations per cluster. This table is
the same as Table 3, but for interaction terms.
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D Structural Estimation Appendix

Throughout this appendix section, we use the notation M and Nj to refer to the number of multi-

homers and users on platform j, respectively, satisfying µj = M/Nj and M +
∑

j(Nj −M) = N .

D.1 Average Time Use and FOCs as a Function of Time Use Moments

This appendix describes how to re-write equations (34) and (35) as functions of time use moments.

Define eij := Tij − Tkj as residual time use for group k, and E2
sj , E2

mj , and Em12 as the variance

of eij for single-homers on j, the variance of eij for multi-homers on j, and Em12 as the covariance

of ei1 and em2 for multi-homers.

The modeled time-use weighted average of user-level ad prices pi is given by:∑
i∈U α · T i (αm) · pi∑

i∈U α · T i (αm)
=

∑
j

∑
i∈Uj

αj · Tij (αm) · pi
N · (α1T1 + α2T2)

(97)

where the denominator follows because residual time use averages to zero. Since in the numerator

Tij is multiplied by pi, which itself depends on T i, the numerator depends on residual time use

variances and covariances. Specifically:

∑
i∈Uj

αjTijpi =
∑
i∈Uj

η ·
(

1 + η0 −
α · T i

Am

)
αjTij (98)

= O · η ·

(1 + η0)αjTmj −
α2
j

(
T 2
mj + E2

mj

)
+ αjα−j (TmjTm,−j + E12)

Am

+

(Nj −O) · η ·

(1 + η0)αjTsj −
α2
j

(
T 2
sj + E2

sj

)
Am

 (99)

The FOC on platform j is:

∑
i

[
∂pi
∂αj

·α · T i (α) + pi ·
(
Tij (α) + αm · ∂T i (α)

∂αj

)]
− cj = 0 (100)

Rearranging slightly:

0 =
∑
i

∂α · Ti(α)

∂αj
·
(
pi(α · Ti(α) + α · Ti(α) · dpi

dα · Ti(α)

)
− cj (101)

=
∑
i

[
Tij(α) + αj

∂Tij(α)

∂αj
+ α−j

∂Ti,−j(α)

∂αj

]
·
[
pi(α · Ti(α) + α · Ti(α) · dpi

dα · Ti(α)

]
− cj

(102)
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If i is a multi-homer:

∂Tij(α)

∂αj
= − γjσ−j

σjσ−j − ρ2
,

∂Ti,−j(α)

∂αj
= − γjρ

σjσ−j − ρ2
(103)

If i is a single-homer:
∂Tij

∂αj
=

−γj
σj

,
∂Ti,−j

∂α
= 0 (104)

Moreover:

pi(α · Ti(α)) + α · Ti(α) · dpi
dα · Ti(α)

=η

(
1 + η0 −

α · Ti(α)

Am

)
+ (105)

α · Ti(α) · ∂

∂α · Ti(α)

[
η(1 + η0 −

α · Ti(α)

Am

]
=η

(
1 + η0 −

α · Ti(α)

Am

)
+ α · Ti(α) · −η

Am
(106)

=η

(
1 + η0 − 2

α · Ti(α)

Am

)
(107)

Substituting into equation (102) and summing across multi-homers and single-homers, we have:

0 = FOCm +
∑
j

FOCsj − cj

where:

FOCm = Mη · (1 + η0)

[
Tmj − αj ·

γjσ−j

σjσ−j − ρ2
− α−j ·

γjρ

σjσ−j − ρ2

]
− 2

Am
Mη

[
αj · (T 2

mj + E2
mj) + α−j · (TmjTm,−j + E2

m12)
]

+
2

Am
·Mη

[(
α2
jTmj + αjα−jTm,−j

)
· γjσ−j

σjσ−j − ρ2
+
(
α2
−jTm,−j + αjα−jTmj

)
· γjρ

σjσ−j − ρ2

]
(108)

and

FOCsj = (Nj −M) · η · (1 + η0) ·
[
Tsj − αj ·

γj
σj

]
− 2η

Am
· (Nj −M) ·

[
αj · (T 2

sj + E2
sj) − α2

jTsj
γj
σj

]
(109)

D.2 Standard Errors

The covariance matrix of Θ is

Σ = H−1 ·Ωh ·H−1, (110)
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where H is

H = R′
ΘWRΘ. (111)

Because
√
n(δ̂ − δ) →d N(0,Ωδ), according to delta method, Ωh is

√
nh(ΘD,π) →d N(0,Ωh) = N(0,R′

ΘWRδΩδR
′
δWRΘ) (112)

The matrices RΘ and Rδ represent the Jacobian matrices with respect to the parameters Θ to be

estimated and the empirical moments δ:

RΘ =
∂

∂ΘD
h(Θ, δ) (113)

Rδ =
∂

∂δ
h(Θ, δ). (114)

A consistent estimator of Σ is

Σ̂ = Ĥ−1 · Ω̂h · Ĥ−1, (115)

where Ω̂h is

Ω̂h = R̂
′
ΘŴ R̂δΩ̂δR̂

′
δŴ R̂Θ, (116)

Ĥ is

Ĥ = R̂
′
ΘŴ R̂Θ, (117)

and Ω̂δ is

Ω̂δ =



Ω̂F

Ω̂E

Ω̂D

Ω̂B

Ω̂G

Ω̂P

Ω̂L


. (118)

In the Ω̂δ matrix just above, Ω̂F is the sample covariance matrix for

({
T̂C
kj

}
kj

)
from FIES; Ω̂E

is the sample covariance matrix for

({
Ê2
kj

}
j,k

, ÊmFI

)
estimated from FIES; Ω̂D is the sample co-

variance matrix for

({
δj−j

}
j

)
from FIES; Ω̂B is the sample covariance matrix for

({
T̂B
j

}
j
,
{
τ̂Cj

}
j

)
,

estimated using Seemingly Unrelated Regressions in the DA data; Ω̂G is the sample covariance ma-
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trix of

{ ̂TAj
j −TC

j

TC
j

}
j

 from Brynjolfsson et al. (2024), Ω̂P is the variance of p̂m, and Ω̂L gives the

variance of λ̂ from the duplication loss experiment. We calculate Ω̂P without assuming time-series

draws of Birch (2025) prices follow the same distribution.16

We assume no covariance across different data sources—for example, between DA, the two

different FIES experiments, Brynjolfsson et al. (2024), and our duplication loss experiment. Lacking

micro-data for FIES diversion ratio estimates from Allcott, Kiefer, and Tangkitvanich (2025) and

Brynjolfsson et al. (2024), we also assume Cov(δ̂IF , δ̂
F
I ) = Cov( ∆̂αTF

TC
F

, ∆̂αTI

TC
I

) = 0and that there is

no correlation between estimated diversion ratios, Control group time use, and residual time use

variance. We expect the effect on standard errors to be small, since (i) we control for baseline

time use in diversion ratio estimation, limiting potential correlation with average time use; and (ii)

time use appears approximately jointly lognormal, in which case means and standard deviations

are close to independent.

Since the estimator is just-identified, we use Ŵ = I. We compute the Jacobians of h(·) using

MATLAB symbolic differentiation.

D.3 Sensitivity Matrix

Table A6 presents the Λ sensitivity matrix defined in Andrews, Gentzkow, and Shapiro (2017) for

our estimator described in Section 4. In the notation of Appendix D.2, this is −(R′
ΘIRΘ)−1R′

ΘI.

As described in Andrews, Gentzkow, and Shapiro (2017), each entry is the local sensitivity of

parameter listed in the row to a small perturbation of the moment listed in the column. We divide

each row by the parameter estimate and multiply each column by the empirical moment, so that

each cell can be interpreted as the local elasticity of the parameter with respect to the moment.

The Facebook and Instagram FOCs are not empirical moments, so we do not multiply those two

columns by anything. Each cell in those two columns can be interpreted as the local percent change

in the parameter in the row with respect to the moment in the column.

Table A7 presents a version of the matrix without multiplying by the empirical moment, so that

each cell can be interpreted as the local percent change in the parameter in the row with respect

to the moment in the column.

16Specifically, we assume that rather than observing 2T observations of pmt , we instead observe T draws of pmtj
on each platform j, where pmtj have the same expectation but do not necessarily follow the same distribution. Then

Ω̂p = V̂ar(p̂m) = V̂ar
(

p̂mF +p̂mI
2

)
= 1

4

(
V̂ar (p̂mF ) + V̂ar (p̂mI )

)
+ 1

2
Ĉov (p̂mF , p̂mI ). We estimate each of these components

using time-series variance and covariance for prices on each platform.
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D.4 Aggregate Elasticity of Ad Demand in Merged Equilibrium

We define the aggregate elasticity of ad demand on platform j as

εDj :=
∂Qj

∂Pj
· Pj

Qj
, (119)

where

Pj :=
∑
i∈Uj

Tij · pi, qi := Am ·
(

1 − pi
η

+ η0

)
, Qj :=

∑
i∈Uj

Tij · qi. (120)

The aggregate elasticity of ad demand is the elasticity of time-weighted ad demand, given by Qj ,

with respect to time-weighted ad price, Pj . Since

Qj =
∑
i∈Uj

Tij ·Am− Am

η
Tij · pi + Tij ·Am · η0 (121)

=
∑
i∈Uj

Tij ·Am · (1 + η0) −
Am

η
Pj , (122)

we have

εDj = −Am

η

∑
i∈Uj

Tij · pi∑
i∈Uj

Tij · qi
. (123)

We define the elasticity in this way to preserve intuitive properties of the elasticity in the merged

equilibrium – namely, that a monopolist sets an aggregate elasticity of demand on each platform

weakly above one, strictly so if either costs are positive or users are averse to ad load. To illustrate

this property, note the merged equilibrium problem is:

max
α

∑
i

pi(α · T i(α)) ·α · T i(α) − c ·α (124)

In this notation, the FOC with respect to αj is

cj =
∑
i

∂

∂αj
(α · T i(α)) ·

(
pi + α · T i(α) · ∂pi

∂ (α · T i(α))

)
=
∑
i

(
Tij(α) + α · ∂T i

∂αj

)
·
(
pi −α · T i(α) · η

Am

)
. (125)

Rearranging gives

cj −
∑
i

α · ∂T i

∂αj
·
(
pi −α · T i(α) · η

Am

)
=
∑
i

Tij(α) ·
(
pi −α · T i(α) · η

Am

)
. (126)

This illustrates the typical two-sided market intuition that the merged platform balances the elas-

ticity of time use (LHS) with the elasticity of demand from advertisers (RHS). Define the effective

cost of higher ad load as c̃j := cj −
∑

iα · ∂T i
∂αj

·
(
pi −α · T i(α) · η

Am

)
, which accounts for both
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“physical” costs from higher ad load as well costs from lost infra-marginal revenue due to lower

time use. Substitute qi = α · T i(α). Rearranging equation (126) gives

c̃j −
∑

i∈Uj
Tij(α) · pi∑

i∈Uj
Tij(α) · pi

= − η

Am
·
∑

i∈Uj
Tij(α) · qi∑

i∈Uj
Tij(α) · pi

⇐⇒ Pj − c̃j
Pj

= − 1

εDj
. (127)

This shows that under our definition of εDj , monopoly ad load follows an analogy to the inverse

elasticity markup rule. This implies that εDj ≤ −1, with greater absolute value indicating higher

effective costs.

To compute εDj , the numerator is the same as equation (152), divided through by αj . The

denominator is∑
i

α · T i(α) · Tij(α) = M ·
[
αj ·

(
T 2
mj + E2

mj

)
+ αj′ ·

(
TmjTmj′ + E12

)]
+ (Nj −M) ·

[
αj ·

(
T 2
sj + E2

sj

)]
. (128)
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E Counterfactual Simulation Appendix

Throughout this appendix section, we use the notation M and Nj to refer to the number of multi-

homers and users on platform j, respectively, satisfying µj = M/Nj and M +
∑

j(Nj −M) = N .

E.1 Setup

Social optimum. The social optimum maximizes total surplus given merged equilibrium plat-

form revenue and advertiser surplus that coordinates to avoid wasteful duplication:

αo := max
α

CS(α) + ASm(α) + Rm(α) − c ·α (129)

where Rm(α) is total platform revenue with no duplication, consumer surplus CS sums utility over

all users:

CS(α) :=
∑
i

Ui(T i(α)) (130)

and advertiser surplus with no duplication ASm(α) is obtained from integrating under the adver-

tiser demand curve for each user and summing across users:

ASm(αm) =
∑
i

Am ·
ˆ (πω)max

pi(αm)
xdH(x) −Rm(αm) (131)

where pi(α) is given by Equation (4).

Let αm represent ad load in the merged equilibrium. The difference in consumer surplus,

advertiser surplus, and platform surplus between the social optimum and the merged equilibrium

are ∆CSo := CS(αo)−CS(αm), ∆ASo := ASm(αo)−ASm(αm), and ∆PSo := Rm(αo)−Rm(αm),

respectively.

Counterfactual ad load – no coordination. Under Facebook-Instagram separation where

platforms cannot coordinate to avoid duplication, reaction functions are (substituting in advertiser-

side parameters):

α∗,s
j

(
αj′ ;Θ

)
:= arg max

αj

(
1 − ζj(α) ·O′

aj (α)
)
·η

(∑
i

αjTij(α) ·
(

1 + η0 −
αjTij(α)

A

))
−cj ·αj j = 1, 2

(132)

The counterfactual equilibrium is (αs
1, α

s
2) the fixed point where α∗,s

j (αs
j′ ; ·) = αs

j for j = 1, 2. Note

that evaluating equation (132) requires calculating marginal duplication O′
aj(α), which depends

on the joint distribution of TiF (α), TiI(α) for multi-homers. We calculate O′
aj(α) by numerically

integrating under the discretized joint distribution of ˆξiF , ξ̂iI for multi-homers for each candidate

value of α in searching for the equilibrium fixed point.

The change in consumer surplus is ∆CSs := CS(αs)−CS(αm). The change in platform surplus

36



Online Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

is:

∆PSs :=

∑
j

Rs
j(α

s)

−Rm(αm) − c · (αs −αm) (133)

Advertiser surplus in the counterfactual equilibrium changes due to both endogenous changes in

price, as well as inefficient duplication of ads. In Appendix E.2, we show that in the counterfactual

equilibrium:

∑
j

ASs
j (αs) =

surplus — no inefficient duplication︷ ︸︸ ︷∑
j

∑
i∈Uj

Am ·
ˆ (πω)max

pij(αs)
xdH(x) −Rs

j(α
s)

−

inefficient duplication︷ ︸︸ ︷
ζj ·
∑
i

ˆ (πω)max

p
i
(αs)

xdH(x) (134)

where p
i
(αs) := max

j
H−1

i

(
1 − αjTij(α

s)

Am

)

The change in advertiser surplus is therefore ∆ASs :=
(∑

j AS
s
j (αs)

)
−ASm(αm). Appendix E.2

provides explicit formulas given our parameterizations.

Counterfactual ad load – coordination. Under Facebook-Instagram separation where plat-

forms coordinate to avoid duplication, reaction functions are:

α∗,c
j (αj′ ;Θ) := arg max

αj

η

(∑
i

αjTij(α) ·
(

1 + η0 −
αjTij(α)

A

))
− cj · αj j = 1, 2 (135)

The counterfactual equilibrium is (αc
1, α

c
2), the fixed point where α∗,c

j (α∗,c
j′ ; ·) = α∗,c

j for j = 1, 2

Unlike in equation (132), the fact that platforms coordinate to avoid duplication implies the reaction

function in equation (135) does not depend on marginal duplication.

Expressions for total consumer, advertiser, and platform surplus are the same as in the merged

equilibrium, so this counterfactual only affects surplus by changing equilibrium ad load. In par-

ticular, the change in surplus relative to the merged equilibrium is ∆CSc := CS(αc) − CS(αm),

∆ASc := ASm(αc) −ASm(αm), and ∆PSc := Rm(αc) −Rm(αm).

E.2 Welfare Formulas

Consumer surplus, as a function of T i, is:

∑
i

Ui(T i) = M ·

∑
j

(ξmj − γjαj)Tmj + E[εijeij |k = m] − σj/2
(
T 2
mj + E2

mj

)
+ ρ (Tm1Tm2 + Em12)


+
∑
j

(Nj −M) ·
[
(ξsj − γjαj) · Tsj + E[εijeij |k = s] − σj/2

(
T 2
sj + E2

sj

)]
(136)
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where εij are residuals from ξkj . Since:

εij = σjeij − ρei,−j , i multi-homer (137)

εij = σjeij , i single-homer (138)

we have:

∑
i

Ui(T i) =M ·

∑
j

(ξmj − γjαj)Tmj + σjE2
mj − ρEm12 − σj/2 · (T 2

mj + E2
mj)

+ ρ · (Tm1Tm2 + Em12)


+
∑
j

(Nj −M) ·
[
(ξsj − γjαj) · Tsj + σjE2

sj − σj/2
(
T 2
sj + E2

sj

)]
(139)

Producer surplus in the merged equilibrium is:

PSm(α) = Rm(α) − c ·α

= η ·
∑
i

α · T i ·
(

1 + η0 −
α · T i

Am

)
− c ·α (140)

= η ·M ·

[
α · Tm · (1 + η0) −

(α · Tm)2 +
(
α2
1E2

m1 + α2
2E2

m2 + 2 · α1α2Em12

)
Am

]

+ η ·
∑
j

(Nj −M) ·

αjTsj · (1 + η0) −
α2
j

(
T 2
sj + E2

sj

)
Am

− c ·α (141)

Producer surplus in the separated equilibrium is:

PSs
j (α) = Rs

j(α) − cjαj

= η ·
(
1 − ζjO

′
aj(α)

)
·
∑
i

αjTij ·
(

1 + η0 −
αjTij

Am

)
− cjαj

= η ·
(
1 − ζjO

′
aj(α)

)
·M ·

αjTmj(1 + η0) −
α2
j

(
T 2
mj + E2

mj

)
Am


+ η ·

(
1 − ζjO

′
aj(α)

)
· (Nj −M) ·

αjTsj(1 + η0) −
α2
j

(
T 2
sj + E2

sj

)
Am

− cjαj (142)

38



Online Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

Advertiser surplus in the merged equilibrium is:

ASm(αm) =
∑
i

Am · Pr(a impresses i) · E[ωiaπa|ωiaπa ≥ pi] −α · T i · pi

=
∑
i

Am ·
ˆ (πω)max

pi(αm)
xdH(x) −α · T i · pi

=
∑
i

[
Am

2η
η2 (1 + η0)

2 − Am

2η
p2i −α · T i · pi

]
(143)

We implement this by calculating:

∑
i

Am

2η
η2 (1 + η0)

2 = N
Am

2η
η2 (1 + η0)

2 ;

∑
i

p2i =
∑
i

η2 ·
(

1 + η0 −
α · T i

Am

)2

= η2 ·M ·

[
(1 + η0)

2 − 2 · 1 + η0
Am

·α · Tm +
(α · Tm)2 +

(
α2
1E2

m1 + α2
2E2

m2 + 2α1α2Em12

)
(Am)2

]

+ η2 ·
∑
j

(Nj −M) ·

(1 + η0)
2 − 2 · 1 + η0

Am
· αjTsj +

α2
j

(
T 2
sj + E2

sj

)
(Am)2

 ;

∑
i

α · T i · pi = Rm(α). (144)

where Rm(α) is given by Equation (141).

To find advertiser surplus in the separated equilibrium, first calculate advertiser surplus with

no inefficient duplication, denoted by AS′
j(α), then subtract out lost surplus from inefficient dupli-

cation. Advertiser surplus without inefficient duplication is:

AS′
j(α) =

∑
i

Am · Pr(a impresses i on j) · E[ωiaπa|ωiaπa · (1 − ζj ·O′
aj) ≥ pij ] − αj · Tij · pi

=
∑
i∈Uj

Am ·
ˆ (πω)max

pij(α)/(1−ζj ·O′
aj)

xdH(x) − αjTijpij

=
∑
i∈Uj

Am
2η

η2(η0 + 1)2 − Am

2η

(
pij

1 − ζjO′
aj

)2

− αjTijpij

 (145)
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We implement this by calculating:

∑
i∈Uj

Am

2η
η2(η0 + 1)2 = Nj ·

Am

2η
η2(η0 + 1)2

∑
i∈Uj

p2ij(
1 − ζjO′

aj

)2 =
∑
i∈Uj

η2 ·
(

1 + η0 −
α̃jTij

Am

)2

= η2 ·M ·

(1 + η0)
2 − 2 · 1 + η0

Am
αjTmj +

α2
j ·
(
T 2
mj + E2

mj

)
(Am)2


+ η2 · (Nj −M) ·

(1 + η0)
2 − 2 · 1 + η0

Am
αjTsj +

α2
j ·
(
T 2
sj + E2

sj

)
(Am)2


∑
i∈Uj

αjTijpij = Rs
j(α) (146)

where Rs
j(α) is given in Equation (142).

To compute advertiser surplus given inefficient duplication, first note that an advertiser buys

enough clicks on j so that they will serve an ad to all i where:

pij ≤ πaωia

(
1 − ζjO

′
aj

)
⇐⇒ H−1

i

(
1 − αjTij(α)

A

)
≤ πaωia (147)

Inefficient duplication occurs if the advertiser would buy enough clicks to serve i on both j and −j.

Define p
i
(α) = maxj H

−1
i

(
1 − αjTij(α)

A

)
. The surplus lost due to inefficient duplication for person

i is

ASL(α) =
∑
i∈Um

Am · Pr(a impresses i on j, j′) · E
[
ζiπaωia|πaωia ≥ p

i
(α)
]

=
∑
i∈Um

Am · Pr
(
πaωia ≥ p

i
(α)
)
· E
[
ζi · πaωia|πaωia ≥ p

i
(α)
]

=

(
1 − κ

η · (1 + η0)
· E
[
pi(α

m)|πaωia ≥ p
i
(α)
])

·
∑
i∈Um

Am ·
ˆ (πω)max

p
i
(α)

xdH(x)

=
Am

2η
·
(

1 − κ

η · (1 + η0)
· E[pi(α

m)]

)
·
[
η2(1 + η0)

2 −
(
p
i
(α)
)2]

. (148)

In this derivation, the fourth line follows from the third because pmi = H−1
i

(
1 − α·T i(α

m)
Am

)
is

uncorrelated with πaωia by Assumptions 1 and 2, so conditioning on πaωia ≥ p
i
(α) does not

change the expectation of pmi .
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Total inefficient duplication becomes:

ASL(α) =

(
1 − κ

η · (1 + η0)
· E[pi(α

m)]

)
·
∑
i∈Um

Am

2η

[
η2(1 + η0)

2 −
(

max
j

η ·
(

1 + η0 −
αjTij(α)

A

))2
]

(149)

where:
E[pi(α

m)]

η · (1 + η0)
=

1

(1 + η0)
·
(

1 + η0 −
α · Tm(αm)

Am

)
. (150)

Given heterogeneous time use among multi-homers, it is challenging to get an analytical expression

for the above. Instead, we directly integrate by following these steps (where the distribution of ξ̂ij

for i ∈ Ukj is denoted with Ξkj , with Ξ collecting all distributions):

1. Write a function mapping from parameters of time use heterogeneity to p
i
(α;Ξ).

2. Numerically integrate under this function using a grid describing the distribution of Ξ.

3. Use Equation (149) to calculate ASL(α).

Finally, we calculate
∑

j AS
s
j (α) =

(∑
j AS

′
j(α)

)
−ASL(α).

E.3 Miscellaneous Formulas

E.3.1 Average Price per Impression

Average price per actual impression on platform j is:

pj =

∑
i∈Uj

pij · αjTij∑
i∈Uj

αjTij
(151)

The denominator is straightforward to calculate. In the merged equilibrium, the numerator is:

∑
i∈Uj

piαjTij =
∑
i∈Uj

η ·
(

1 + η0 −
α · T i

Am

)
αjTij

= M · η ·

(1 + η0)αjTmj −
α2
j

(
T 2
mj + E2

mj

)
+ αjα−j (TmjTm,−j + E12)

Am

 (152)

+ (Nj −M) · η ·

(1 + η0)αjTsj −
α2
j

(
T 2
sj + E2

sj

)
Am


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In the separated equilibrium, the numerator is:

∑
i∈Uj

pijαjTij = (1 − ζO′
aj) · η ·

∑
i∈Uj

(
1 + η0 −

αjTij

Am

)
αjTij

= (1 − ζO′
aj) · η ·M ·

(1 + η0)αjTmj −
α2
j

(
T 2
mj + E2

mj

)
Am


+ (1 − ζO′

aj) · η · (Nj −M) ·

(1 + η0)αjTsj −
α2
j

(
T 2
sj + E2

sj

)
Am

 (153)

E.3.2 Formula for ζj(α)

By definition:

ζj(α) = 1 − κ

η · (1 + η0)

Ei [Tij(α) · pmi |i ∈ Um]

Tmj(α)
(154)

Since:

Ei [Tij(α) · pmi |i ∈ Um] = M−1
∑
i∈Um

Tij(α) · pmi (155)

M−1
∑
i∈Um

[
η ·
(

1 + η0 −
αm · T i(α

m)

Am

)
· Tij(α)

]
(156)

= η ·

(1 + η0) · Tmj(α) −
αm
j

(
Tmj(α

m)Tmj(α) + E2
mj

)
+ αm

−j (Tm,−j(α
m)Tmj(α) + E12)

Am


(157)

the formula for ζj(α) is

ζj(α) = 1− κ

1 + η0
·T−1

mj (α)·

(1 + η0) · Tmj(α) −
αm
j

(
Tmj(α

m)Tmj(α) + E2
mj

)
+ αm

−j (Tm,−j(α
m)Tmj(α) + E12)

Am


(158)

E.4 Overlap Sensitivity Analysis Implementation Details

In this appendix, we describe how we convert users between being single-homers and multi-homers

for the purpose of constructing Figure 9.

We first describe how we convert multi-homers into single-homers. Setting ni = 0, the original

utility functions for multi-homers are:

Ui (T i, ni;α) =
∑
j

[
(ξij − γjαj)Tij − σjT

2
ij/2

]
+ ρTi1Ti2. (159)

42



Online Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

To increase the share of single-homers, we separate multi-homers into two single-homers, with one

on each platform, such that Tij and total Ui are unchanged at baseline ad load. The utility functions

for new single-homers i on j who were previously multi-homers is:

Uij =
(
ξij + ρT̂m

i,−j − γjαj

)
Tij − σjT

2
ij/2 − ρT̂m

i1 T̂
m
i2 /2 (160)

where T̂m
ij is person i’s time use observed in the merged equilibrium. Differentiating with respect

to Tij and solving delivers:

Tij(α) =
ξij − γjαj + ρT̂m

i,−j

σj
(161)

When evaluated at the merged equilibrium αm, equation (161) aligns with equation (22) for time use

on platform j for single-homers who were formerly multi-homers. This implies the sum of merged

equilibrium average time use Tm for the new single-homers equals Tm for the original multi-homer.

Utility also aligns because the combined users have total utility in the merged equilibrium equal

to: ∑
j

Uij =
∑
j

(
ξij + ρT̂m

i,−j − γjα
m
j

)
T̂m
ij − σj

(
T̂m
ij

)2
/2 − ρT̂m

i1 T̂
m
i2 (162)

=
∑
j

(
ξij − γjα

m
j

)
T̂m
ij − σj

(
T̂m
ij

)2
/2 + ρT̂m

i1 T̂
m
i2 = Ui(T̂

m
, ni;α

m) (163)

We now describe how we convert single-homers into multi-homers. Again setting ni = 0, the

original utility functions for single-homers can be written as

Uij (Tij , ni;αj) = (ξij − γjαj)Tij − σjT
2
ij/2. (164)

To increase the share of multi-homers, we combine two randomly-drawn single-homers into one

multi-homer, such that Tij and total Ui are again unchanged at baseline ad load. The new utility

functions for multi-homers are

Ui =
∑
j

[(
ξij − ρT̂m

i,−j − γjαj

)
Tij − σjT

2
ij/2

]
+ ρTi1Ti2 + ρT̂m

i1 T̂
m
i2 . (165)

Differentiating with respect to Tij yields:

Tij(α) =
ξij − γjαj + ρ

(
Ti,−j − T̂m

i,−j

)
σj

(166)

Equation (166) aligns with equation (22) for time use on platform j for multi-homers who were

formerly single-homers when evaluated at merged equilibrium αm. Utility also aligns because
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combined users have total utility in the merged equilibrium equal to:

Ui =
∑
j

(
ξij − ρT̂m

i,−j − γjα
m
j

)
T̂m
ij − σj

(
T̂m
ij

)2
/2 + ρT̂m

i1 T̂
m
i2 + ρT̂m

i1 T̂
m
i2 (167)

=
∑
j

(
ξij − γjα

m
j

)
T̂m
ij − σj

(
T̂m
ij

)2
/2 = Ui1(T̂

m
, ni;α

m) + Ui2(T̂
m
, ni;α

m) (168)

where Uij here represents the utility of the single-homing user on platform j combined with another

user on −j to create multi-homer i.

Equations (160) and (165) introduce three new user types: single-homers on Facebook converted

from multi-homers, single-homers on Instagram converted from multi-homers, and multi-homers

converted from one single-homer on Facebook and one single-homer on Instagram. The modeled

averages of time on platform j for these groups are, respectively:

Ts′j =
ξmj + ρT̂m

m,−j − γjαj

σj
(169)

Tm′j =
ξsj − ρT̂m

s,−j − γjαj + ρTm′,−j

σj
=

(
ξsj − ρT̂m

s,−j − γjαj

)
+
(
ξs,−j − ρT̂m

sj − γ−jα−j

)
· ρ/σ−j

σj − ρ2/σ−j

(170)

where we use the subscript s′j to denote single-homers on j converted from multi-homers, and

the subscript m′j to denote multi-homers on j converted from one single-homer on Facebook and

one single-homer on Instagram. Average time use for single-homers, multi-homers, and all users is

given by:

TSj = (1 − µ′
sj)Tsj + µ′

sjTs′j (171)

TMj = (1 − µ′
mj)Tmj + µ′

mjTm′j (172)

Tj = (1 − µj)TSj + µjTMj (173)

where µ′
sj is the share of single-homers on j converted from multi-homers; µ′

mj is the share of multi-

homers on j converted from single-homers; and µj is the total platform share of multi-homers.

When we change the overlap share to be below overlap in the merged equilibrium, we convert

multi-homers into single-homers. The new number of multi-homers and single-homers becomes

M ′ = M − ∆, N ′
j = Nj + ∆. The overlap share becomes µj = M ′/N ′

j , the share of single-homers

converted from multi-homers becomes µ′
sj = ∆/(N ′

n−M ′), and the share of multi-homers converted

from single-homers is µ′
mj = 0.

When we change the overlap share to be above overlap in the merged equilibrium, we convert

single-homers into multi-homers. The new number of multi-homers and single-homers becomes

M ′ = M + ∆, N ′
j = Nj − ∆. The overlap share becomes µj = M ′/N ′

j , the share of single-homers

converted from multi-homers is µ′
sj = 0, and the share of single-homers converted from multi-homers
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is µ′
mj = ∆/M ′.

Finally, equations (161) and (166) show that conversions affect the distribution of ξij for multi-

homers and single-homers, meaning conversions also affect the variance of time use residuals on

each platform. Letting i′ denote users subject to conversions, we have, for K ∈ S,M :

Var(TiKj) = Var
(
(1 − µ′

kj)Tikj + µ′
kjTik′j

)
(174)

= (1 − µ′
kj)

2 · Var(Tikj) +
(
µ′
kj

)2 · Var
(
Tik′j

)
(175)

Hence:

Var(TiSj) = (1 − µ′
sj)

2 · E2
sj +

(
µ′
sj

)2 · E2
mj (176)

Var(TiMj) = (1 − µ′
mj)

2 · E2
mj +

(
µ′
sj

)2 · E2
sj (177)

Since conversions impact the marginal distribution of residual time use, they also potentially impact

the joint distribution of residual time use. For parsimony, we leave the joint distribution of residual

time use, and the joint distribution used to calculate the marginal overlap function, fixed as we

vary the multi-homer share.

E.5 Structural Estimates and Counterfactuals with Alternative Parameter Val-

ues

E.5.1 Alternative Time Use

In this appendix, we present parameter estimates and counterfactual simulations under alternative

assumptions for user time on platform. eMarketer (2025) estimates that the average Facebook user

spends 33 minutes per day on Facebook, while the average Instagram user spends 29 minutes on

Instagram. We rescale the FIES time use moments T̂C
kj and standard errors to match the eMarketer

(2025) estimates. This decreases the Facebook time use moments and increases the Instagram time

use moments. Lacking alternative data on the distributions around these time use means, we

maintain our baseline estimates of the distributions of eij and ξij .

Table A8 summarizes the updated empirical moments. Tables A9 and A10 present the updated

parameter estimates and counterfactual simulation results.
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Table A8: Alternative Time Use Specification: Changes to Empirical Moments

Parameter Description Primary
Value

Alternative
value

Alternative
source

T̂C
sF Single-homer average FB use (hours/day) 0.720 0.565 FIES, eMarketer (2025)

T̂C
mF Multi-homer average FB use (hours/day) 0.685 0.538 FIES, eMarketer (2025)

T̂C
sI Single-homer average IG use (hours/day) 0.263 0.564 FIES, eMarketer (2025)

T̂C
mI Multi-homer average IG use (hours/day) 0.220 0.473 FIES, eMarketer (2025)

Notes: This table summarizes the updated empirical moments in this alternative specification.
Standard errors are similarly rescaled relative to the values in Table 5. “FIES” refers to the
Facebook and Instagram Election Study.

Table A9: Alternative Time Use Specification: Parameter Estimates

Parameter Description Units Estimate SE

ξsF FB single-homer demand intercept $/hour 6.4 0.76
ξmF FB multi-homer demand intercept $/hour 6.7 0.73
ξsI IG single-homer demand intercept $/hour 7.0 1.29
ξmI IG multi-homer demand intercept $/hour 6.6 1.02
ρ Platform substitution $/hour2 -1.14 0.72
σF FB curvature $/hour2 10.4 1.20
σI IG curvature $/hour2 11.5 2.00
γF FB ad load disutility $/ad 0.0076 0.0018
γI IG ad load disutility $/ad 0.0090 0.0024
κ Return to duplication 0.537 0.10

η Advertiser demand slope share of A
$/impression 0.066 0.01

η0 Advertiser demand intercept share of A -0.737 0.05
cI IG ad load cost $/(ad/hour) 0.0020 0.0003

Notes: This table presents the parameter estimates from the estimation procedure described in
Section 4 using the updated time use moments from Table A8.
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E.5.2 Alternative Ad Disutility, with Network Effects Interpretation

In this appendix, we present alternative parameter estimates and counterfactual results under an

alternative estimation strategy. Instead of identifying Instagram users’ ad disutility γI using the

Instagram ad response moment hAI in equation (32), we instead drop hAI , impose cI = 0, and

identify γI using the Instagram FOC. This identifies γI as an implicit “cost” of higher ad load

from reduced time use. Unlike the ad response moment, which only captures the effect of changes

in αj from the Brynjolfsson et al. (2024) individual-level randomized ad holdout experiment, γI

identified from the Instagram FOC could capture the merged platform’s belief about the effect on

time use due to a change in αj for all platform users, inclusive of any network effects.

Table A11 presents alternative parameter estimates. The FOC-implied Instagram ad load disu-

tility γ̂I is about nine times higher than in the primary specification. Instagram utility intercepts

are higher than at baseline, and other parameter estimates are essentially unchanged.

These results imply that given the empirical moments and model structure, the merged platform

would set Instagram ad load higher than is observed in the data if users had the low aversion to

ad load implied by the Brynjolfsson et al. (2024) experiment. That Instagram sets ad load lower is

consistent with user network effects.

To quantify implications for network effects, we interpret the reduced-form γ̂I through the lens

of an alternative utility specification with explicit network effects. This exercise holds fixed other

parameters at their estimated values, although some estimates might change if estimated using the

form for utility specified below. Given this caveat, we view these results as illustrative.

Suppose utility were:

Ui (T i, ni;α) =
∑
j

[
(ξij + ωjTj − γjαj)Tij − σjT

2
ij/2

]
+ ρTi1Ti2 + ni, (178)

where ωj is the “network effect”: the effect on individual utility of other users’ time on platform.

Maximizing utility gives

Tsj =
ξsj + ωjTj − γjαj

σj
(179)

Tmj =
(ξmj + ωjTj − γjαj) + (ξm,−j + ω−jT−j − γ−jα−j) · ρ/σ−j

σj − ρ2/σ−j
(180)

Tj = (1 − µj)Tsj + µjTmj . (181)

Closed forms for these expressions require solving for Tj . Assuming that ωF = 0, Tj is given by

Tj =
(1 − µj)

Sj(ωj)
· ξsj − γjαj

σj
+

µj

Sj(ωj)
· (ξmj − γjαj) + (ξm,−j − γ−jα−j) · ρ/σ−j

σj − ρ2/σ−j
, (182)

where
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Sj(ωj) :=

(
1 −

[
(1 − µj)

σj
+

µj

σj − ρ2/σ−j

]
ωj

)
. (183)

In the reduced-form specification we estimate in this subsection, we have:

∂TI

∂αI
= −γ̂I ·

(
1 − µI

σI
+

µI

σI − ρ2/σF

)
(184)

In the network effects model, we would have:

∂TI

∂αI
= −γI ·

1 − SI(ωI)

SI(ωI)
(185)

To interpret our estimate of γ̂I through the lens of a network effects model, we solve for ωI so that:

−γ̂I ·
(

1 − µI

σI
+

µI

σI − ρ2/σF

)
= −γ̂I0 ·

1 − SI(ωI)

SI(ωI)
(186)

where γ̂I0 is what we would estimate for γI in a full network effects model. We approximate this

with our estimate for γI from the baseline model identified using the Brynjolfsson et al. (2024)

experiment. We have

ωI =
γ̂I

γ̂I0 + γ̂I ·
(
1−µI
σI

+ µI

σI−ρ2/σF

) . (187)

Applying γ̂I and estimates of σj , ρ from Table A1117 with an estimate of γ̂I0 from Table 6

implies ωI = 6.01 $/hour2. Thus, our estimates imply that average Instagram time use of 0.225

hours/day increases the demand intercept by 1.35 $/hour. This is about one-fifth of the estimated

demand intercepts, and means the estimate γI from the FOC is consistent with reasonably large

network effects.

Table A12 presents counterfactual results. There are three qualitative differences relative to the

baseline counterfactual results, all driven by the higher estimated ad aversion on Instagram. First,

the social optimum is a corner solution with zero ads on Instagram. Second, Instagram competes

harder for users in the separated equilibrium and hence lowers ad load. Third, Instagram surplus,

and hence total surplus, is much more sensitive to ad load changes. Total surplus increases by about

9.5 percent in the social optimum relative to the merged equilibrium. Instagram’s competition for

users, and the resulting decrease in Instagram ad load, raises total surplus in the separated equi-

librium with coordinated ad delivery, relative to the merged equilibrium. However, the welfare loss

from inefficient duplication reduces total surplus in the separated equilibrium with uncoordinated

ads, relative to the merged equilibrium.

17In principle, estimates of σj and ρ may change in a fully-estimated network effects model. In practice, as shown
in Table A6, σj and ρ are only sensitive to hC , hD, and hB , all of which would not change in the fully-estimated
network effects model.
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Table A11: Alternative Ad Disutility Specification: Parameter Estimates

Parameter Description Units Estimate SE

ξsF FB single-homer demand intercept $/hour 6.6 0.74
ξmF FB multi-homer demand intercept $/hour 6.5 0.72
ξsI IG single-homer demand intercept $/hour 10.3 2.08
ξmI IG multi-homer demand intercept $/hour 10.1 1.66
ρ Platform substitution $/hour2 -1.18 0.77
σF FB curvature $/hour2 8.4 0.93
σI IG curvature $/hour2 23.8 4.53
γF FB ad load disutility $/ad 0.0078 0.0018
γI IG ad load disutility $/ad 0.070 0.01
κ Return to duplication 0.557 0.10

η Advertiser demand slope share of A
$/impression 0.080 0.01

η0 Advertiser demand intercept share of A -0.765 0.03

Notes: This table presents the parameter estimates using the alternative estimation procedure
described in Section E.5.2.
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