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G Additional Model Derivations

G.1 Reaction Functions

This appendix presents additional intuition on strategic incentives as the two platforms compete.

We do this primarily with reaction functions computed numerically at example parameter values.

To simplify the analysis, we restrict the model from the main text in two ways. First, we assume
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time on platform T i is exogenous but not necessarily homogeneous. Second, we assume ⇣j = 1,

so that duplicated impressions are fully wasted, and that c = 0. We first present the first-order

conditions before illustrating them using numerical examples. Derivations are in Appendix G.2.

G.1.1 First-Order Conditions

Re-arranging equation (13), the merged platform chooses ad load to satisfy

↵e,m

j
=

P
i
↵�j · Ti,�j · @pi

@↵j
+ Tij · pi

�
P

i
Tij · @pi

@↵j

(T1)

where
@pi
@↵j

= � ⌘

Am
· Tij .

Rearranging equation (16), the separated platforms choose ad load to satisfy

↵e,s

j
=

P
i2Uj

Tij · pij
�
P

i2Uj
Tij · @pij

@↵j

. (T2)

G.1.2 Numerical Examples

We explore how the above forces impact ad load in the separated relative to combined equilibrium

through several numerical examples. We parameterize the distribution of time use with a measure

M of multi-homers with Tmi ⇠ N
�
1
2 ,⌃T

�
, and a measure Nj of single-homers Tsi = 1. Unless

otherwise specified, we set ⇣j = m = 1 and the remaining model parameters to their estimated

value from Section 4.

Example 1: Partial user overlap (with coordinated ad delivery). We first focus on how

partial user overlap impacts the magnitude of the advertiser-side Cournot externality when sepa-

rated platforms can coordinate to avoid duplication. We set ⌃T = 0, so that multi-homers split

one unit of time equally across platforms.

The merged equilibrium solution is standard linear Cournot: ↵e,m

j
= 1

2
Am·(1+⌘0). In separated

equilibrium, reaction functions are:

↵e,s,i

j
(↵�j) =

2� µj

(4� 3µj)
Am · (1 + ⌘0)�

1

2

µj

(4� 3µj)
↵�j . (T3)

When there is no overlap (µj = 0), each separated platform behaves as a monopolist. As overlap

increases, separated platforms respond more to their rival’s actions, as they have a greater impact

on revenue, and internalize less the price impact of increased ad load. Appendix Section G.2.1

derives a closed-form expression for separated equilibrium ad load, and shows that the percent

change relative to the merged equilibrium only depends on overlap statistics and is independent of

ad demand parameters.
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Figure T1, panel (a) plots reaction functions and equilibria in to show these forces concretely.

Facebook reaction functions to Instagram ad load are plotted horizontally, and Instagram reaction

functions to Facebook ad load are plotted vertically. Equilibria are plotted with black dots where

the reaction functions intersect. Black lines plot vertical reaction functions when µj = 0, because

platforms ignore their rival’s actions. The blue and orange solid lines plot reaction functions when

µj = 1 for both platforms, indicating a 40% increase in ad load relative to the merged equilibrium.

The dashed lines plot reaction functions given empirically-observed µj , with µIG > µFB. Since

Instagram has more overlap than Facebook, it will internalize less of the impact of increased ad

load on equilibrium prices, and hence increase ad load by much more than Facebook.

Example 2: Uncoordinated ad delivery (with full user overlap). We next consider a

separated equilibrium where platforms cannot coordinate to avoid duplication. To focus on the role

of duplication, we assume all users are multi-homers with heterogeneous time use parameterized

by ⌃T = diag
�
�2,�2

�
. Heterogeneous time use ensures that the marginal duplication function is

continuous and di↵erentiable.

Reaction functions no longer have a closed form, but are given by

↵e,s,i

j
(↵�j) = argmax

↵j

�
1�O0

aj

�
·⌘
 
X

i

↵jTij ·
✓
1 + ⌘0 �

↵jTij

Am

◆!
, (T4)

This expression comes from substituting cj = 0, Tij(↵) = Tij , and the formula for separated

equilibrium prices in equation (8) into problem (15), where O0
aj

is given by equation (9). Rival

ad load ↵�j only enters the expression through marginal duplication O0
aj
. This makes clear how

duplication a↵ects revenue from ad prices directly and strategically through the business stealing

e↵ect. Moreover, the variance of time use, controlled by �2, will alter separated platform incentives.

When �2 is very low, platforms can precisely a↵ect marginal duplication and user prices through

changes in ad load, amplifying strategic di↵erences relative to the merged equilibrium. When �2

is very high, changes in ad load have little impact on marginal duplication, dampening di↵erences

relative to the merged equilibrium.

Figure T1, panel (b) illustrates these points. The solid blue and orange lines plot Facebook and

Instagram reaction functions when �2 is relatively low. Ad load increases significantly. Because

platforms have fine control over marginal duplication, the business stealing e↵ect is strong, making

choice of ad load a strategic complement. The dashed lines plot reaction functions when �2 is high.

Ad load still shifts out due to the direct e↵ect. However, platforms have much less control over

marginal duplication through choice of ad load, severely dampening the business stealing e↵ect.

Example 3: Uncoordinated ad delivery and partial user overlap together. Finally,

we consider the impact of uncoordinated ad delivery and partial user overlap jointly. Reaction

functions are the same as in equation (T4). However, the value of O0
aj

changes because O0
aj

is lower
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when a lower fraction of users are multi-homers. To see this, note that:

O0
aj =

P
i2Um

1 [↵jTij  ↵�jTi,�j ]

Nj

(T5)

= µj · Pr (↵jTij  ↵�jTi,�j |i 2 Um) . (T6)

The first line follows because Ti,�j = 0 implies the numerator is zero for i /2 Um. The second line

means that a lower fraction of multi-homers, and hence lower µj , implies lower marginal overlap,

holding fixed ↵ and the time use distribution.

Figure T1, panel (c) plots the resulting reaction functions, where all reaction functions use

the empirical overlap µj on Facebook and Instagram. First, partial overlap (µj < 1) dampens

the impact of duplication, since each platform has a user population for whom strategic incentives

do not change relative to the merged equilibrium. Second, the business stealing motive appears

stronger for Instagram than Facebook. This is because Instagram has greater overlap, magnifying

the returns to business stealing. Finally, higher time use variance again dampens the business

stealing e↵ect, although to a lesser degree as it is already dampened by overlap.

Summary of numerical examples. With exogenous but heterogeneous time use, separating

platforms leads to a greater increase in ad load when user overlap across platforms is greater.

First, higher overlap leads merged platforms to constrain ad load by more relative to separated

platforms, which do not consider the impact of lower ad prices on their rival’s revenue. Second,

if platforms can’t coordinate to avoid ine�cient duplication, ad load increases by even more in

the separated equilibrium due to the “business stealing” incentive to increase ad load and reduce

marginal duplication.

G.1.3 Possibility of Strategic Complementarity

Section G.1.2 gives examples where business stealing changes ad load from strategic substitutes

into strategic complements: reaction functions are globally downwards-sloping in Figure T1, panel

(a) with coordinated ad delivery, but can be upwards sloping in panel (c) with uncoordinated

ad delivery. The following proposition shows formally that optimal ad loads are always strategic

substitutes when ad delivery is coordinated but may be strategic complements when ad delivery is

uncoordinated.

Proposition 1 (Advertiser-side strategic complementarity). Suppose that time use T i is exogenous

with @T i
@↵j

= 0 and a well-defined distribution for Tij

Ti,�j
, O0

aj
is twice di↵erentiable, Assumptions 1

and 2 hold, c = 0, and ⇣j = 1. Then in the separated equilibrium in Problem (15), ad load choices

are strategic substitutes if ad delivery is coordinated, and either strategic complements or substitutes

if ad delivery is uncoordinated.
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Figure T1: Key Advertiser-Side Forces: Numerical Examples
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(c) Partial Overlap and Duplication Together

Notes: This figure presents numerical examples described in Section G.1.2. Panel (a) plots reaction
functions in an example with partial overlap but no duplication in separated equilibrium. Panel (b)
plots reaction functions in an example with full overlap and duplication. Panel (c) plots reaction
functions in an example with partial overlap and duplication.

G.2 Derivations for Section G.1

This subsection derives expressions in Section G.1.
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Derivation of equation (T1). The merged firm’s problem is

↵e,m = argmax
↵

X

i

pi ·↵ · T i, (T7)

where the only di↵erence relative to equation (12) is that time use does not depend on ↵ as it is

exogenous and c = 0. The first-order conditions are

0 =
@

@↵j

"
X

i

pi ·↵ · T i

#

=
X

i

↵ · T i ·
@pi
@↵j

+ pi · Tij . (T8)

Rearranging:

↵j = �
P

i
↵�j · Ti,�j · @pi

@↵j
+ Tij · pi

P
i
Tij · @pi

@↵j

where
@pi
@↵j

= � ⌘

Am
· Tij , (T9)

and where the value of @pi
@↵j

comes from di↵erentiating equation (4) with respect to ↵j and applying

the inverse function rule.

Derivation of equation (T2). The separated platform problem is

↵e,s,i

j
= argmax

↵j

X

i2Uj

↵j · Tij · pij (T10)

The first-order condition is

0 =
X

i2Uj

↵j · Tij ·
@pij
@↵j

+ Tij · pij . (T11)

Rearranging gives the expression:

↵j = �
P

i2Uj
Tij · pij

P
i2Uj

Tij · @pi
@↵j

, (T12)

where
@pij
@↵j

= �
�
1�O0

aj

�
· ⌘

Am
· Tij �

pij⇣
1�O0

aj

⌘
@O0

aj

@↵j

, (T13)

which gives the expressions in the text.

Proof of Proposition 1. To show ad load choices are strategic substitutes in Problem (16) with

coordinated ad delivery, first note that given Assumptions 1 and 2,

@pi
@↵j

= � ⌘

Am
· Tij =) @2pi

@↵�j@↵j

= 0. (T14)

Di↵erentiate equation (T2) with respect to ↵�j and substitute pij = pi to reflect coordinated ad
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delivery:

@↵e,s,i

j

@↵�j

= �
P

i2Uj
Tij · @pi

@↵�jP
i2Uj

Tij · @pi
@↵j

= �
P

i2Uj
TijTi,�j

P
i2Uj

T 2
ij

. (T15)

This proves that
@↵

e,s,i
j

@↵�j
 0, meaning choices of ad load are strategic substitutes.

To show that ad load choices can be strategic complements in Problem (15) with uncoordinated

ad delivery, define the distribution of Tij/Ti,�j as T�j and note that

O0
aj = Pr (↵jTij  ↵�jTi,�j) = T�j (↵�j/↵j) . (T16)

Therefore,
@O0

aj

@↵�j

= T 0
�j

✓
↵�j

↵j

◆
· ↵�1

j
� 0,

@O0
aj

@↵j

= �T 0
�j

✓
↵�j

↵j

◆
· ↵�j

↵2

j

 0. (T17)

Moreover,
@O0

aj

@↵�j@↵j

= �T 0
�j

✓
↵�j

↵j

◆
· 1

↵2

j

� ↵�j

↵3

j

· T 00
�j

✓
↵�j

↵j

◆
, (T18)

which has ambiguous sign. Di↵erentiate equation (T2) with respect to ↵�j in the case with unco-

ordinated ad delivery (with pij separate on each platform and given by equation (8)):

@↵e,s,i

j

@↵�j

= �
P

i2Uj
Tij · pij

⇣P
i2Uj

Tij · @pij

@↵j

⌘2 ·
X

i2Uj

Tij ·
@2pij

@↵�j@↵j

. (T19)

Strategic complementarity occurs when @
2
pij

@↵�j@↵j
< 0, and strategic substitutes when @

2
pij

@↵�j@↵j
> 0.

Moreover,

@2pij
@↵�j@↵j

=
@O0

aj

@↵�j

· ⌘

Am
Tij +

pij⇣
1�O0

aj

⌘2
@O0

aj

@↵�j

@O0
aj

@↵j

� pij⇣
1�O0

aj
(↵e,s,d

⌘
@2O0

aj

@↵�j@↵j

. (T20)

The first term is positive because
@O

0
aj

@↵�j
is. The second term is negative because

@O
0
aj

@↵j
is. The third

term has a sign depending on the sign of
@
2
O

0
aj

@↵�j@↵j
, which is ambiguous and depends on the shape of

the pdf of Tij/Ti,�j . Overall, it is thus possible that @
2
pij

@↵�j@↵j
< 0, implying that

@↵
e,s,i
j

@↵�j
< 0 (making

ad load choices strategic complements).

Remark. Proposition 1 also holds with arbitrary c and ⇣i that satisfy Assumption 3, where the
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proof focuses on the restricted case for notational clarity.

G.2.1 Derivations for Section G.1.2

This subsection derives expressions in Section G.1.2. Throughout, we use the notation M and Nj

to refer to the number of multi-homers and users on platform j, respectively, satisfying µj = M/Nj

and M +
P

j
(Nj �M) = N .

Derivation of merged equilibrium ad load. The merged firm’s revenue is

Rm(↵) = ⌘ ·

0

@M

2
(↵1 + ↵2) ·

✓
1 + ⌘0 �

↵1 + ↵2

2Am

◆
+
X

j

(Nj �M)↵j

⇣
1 + ⌘0 �

↵j

Am

⌘
1

A . (T21)

The first-order condition with respect to ↵j is

0 =
M

2

✓✓
1 + ⌘0 �

↵j + ↵�j

Am

◆
+ (Nj �M)

⇣
1 + ⌘0 � 2

↵j

Am

⌘◆

=
↵j

Am
(3M � 4Nj) + (1 + ⌘0) (2Nj �M)� O

A
↵�j . (T22)

Therefore,

↵j =
2Nj �M

4Nj � 3M
Am(1 + ⌘0)�

M

4Nj � 3M
↵�j . (T23)

Substituting in for ↵�j and simplifying gives

↵j =

✓
(2Nj �M) (4N�j � 3M)�M(2N�j �M)

(4Nj � 3M) · (4N�j � 3M)�M2

◆
Am(1 + ⌘0). (T24)

The numerator simplifies to 8NjN�j � 6M(Nj + N�j) + 4M2 and the denominator simplifies to

2 ·
�
8NjN�j � 6M(Nj +N�j) + 4M2

�
. Therefore, the expression becomes:

↵e,m

j
=

1

2
Am(1 + ⌘0), (T25)

as reported in the text.

Derivation of Equation (T3). Separated platform revenue is

Rs

j(↵) = ⌘ ·
✓
M

2
↵j ·

✓
1 + ⌘0 �

↵1 + ↵2

2Am

◆
+ (Nj �M)↵j

⇣
1 + ⌘0 �

↵j

Am

⌘◆
. (T26)

The first-order condition is

0 =
M

2

✓
1 + ⌘0 �

↵j + ↵�j

2Am
� ↵j

2Am

◆
+ (Nj �M)

⇣
1 + ⌘0 � 2

↵j

Am

⌘

=
↵j

Am
(3M � 4Nj) + (1 + ⌘0) (2Nj �M)� M

Am
↵�j . (T27)
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Therefore,

↵e,s,i

j
(↵�j) =

2Nj �M

4Nj � 3M
Am(1 + ⌘0)�

M

(4Nj � 3M)
↵�j

=
2� µj

4� 3µj

Am(1 + ⌘0)�
µj

4� 3µj

↵�j , (T28)

where we factor out Nj from the numerator and denominator to express in terms of µj . Substituting

for ↵�j and simplifying yields:

↵e,s,i

j
=

✓
(2Nj �M) (4N�j � 3M)�O(2N�j �M)

(4Nj � 3M) · (4N�j � 3M)�M2

◆
Am(1 + ⌘0). (T29)

Percent change in ad load only depends on overlap statistics. Using equations (T25) and (T29), the

percent increase in ad load in the separated equilibrium is

↵e,s,i

j

↵e,m

j

� 1 = 2 ·
✓
(2Nj �M) (4N�j � 3M)�M(2N�j �M)

(4Nj � 3M) · (4N�j � 3M)�M2

◆
� 1

= 2 ·
✓
(2� µj) (4� 3µ�j)� µj(2� µ�j)

(4� 3µj) · (4� 3µ�j)� µjµ�j

◆
� 1. (T30)

This only depends on overlap statistics, proving the claim in the text.

G.3 Derivations for Section 1.3

This section analyzes the full model under various ownership structures. Throughout, we will apply

assumptions 1 and 2.

G.3.1 Social Planner Benchmark

The analysis follows each point in Section 1.3.1. The planner chooses

↵o = argmax
↵

X

i

U⇤
i (T (↵), n;↵) +

X

i

Am ·
(⇡!)

maxˆ

x=pi(↵)

xdH(x)� c ·↵. (T31)

The first-order condition is

0 =
X

i

@U⇤
i
(·;↵)

@↵j

�
X

i

Am

⌘
· pi (↵) · @pi (↵)

@↵j

� cj . (T32)

Since
@pi (↵)

@↵j

= � ⌘

Am
·

Tij + ↵j

@Tij

@↵j

+ ↵�j

@Ti,�j

@↵j

�
, (T33)
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the FOC becomes

0 =
X

i

@U⇤
i
(·;↵)

@↵j

�
X

i

pi(↵) ·

Tij + ↵j

@Tij

@↵j

+ ↵�j

@Ti,�j

@↵j

�
� cj . (T34)

Solving for ↵j gives

↵o

j =

P
i

@U
⇤
i (·;↵)

@↵j
+
P

i
pi(↵) ·

⇣
Tij + ↵�j

@Ti,�j

@↵j

⌘
� cj

�
P

i
pi(↵) · @Tij

@↵j

. (T35)

G.3.2 Merged Platform Solution

The problem is:

max
↵

X

i

pi(↵) ·↵ · T i(↵)� c ·↵. (T36)

The first-order conditions are

0 =
X

i


@pi
@↵j

·↵ · T i(↵) + pi(↵) · Tij(↵) + pi(↵) ·↵ · @T i(↵)

@↵j

�
� cj . (T37)

Solving for ↵j gives

↵m

j =

P
i

@pi
@↵j

·↵ · T i(↵) +
P

i
pi(↵) ·

⇣
Tij(↵) + ↵�j · @Ti,�j

@↵j
(↵)
⌘
� cj

�
P

i
pi(↵) · @Tij

@↵j
(↵)

. (T38)

G.3.3 Separated Platform Solution with Coordinated Ad Delivery

The problem is

max
↵j

X

i2Uj

pi(↵) · ↵j · Tij(↵)� cj↵j . (T39)

The first-order conditions are

0 =
X

i

@pi
@↵j

· ↵j · Tij(↵) + pi(↵) · Tij + pi(↵) · ↵j ·
@Tij

@↵j

(↵)� cj . (T40)

Solving for ↵j gives

↵s,c

j
=

P
i2Uj

@pi
@↵j

· ↵j · Tij(↵) +
P

i2Uj
pi(↵) · Tij � cj

�
P

i2Uj
pi(↵) · @Tij

@↵j
(↵)

. (T41)

This di↵ers from equation (16) in the main text because rather than depending on platform-

specific prices pij , it depends on an integrated price pi. This means duplication loss does not impact

ad load. The di↵erence in incentives in the separated versus merged equilibrium still depends on

user overlap, however. When all users are single-homers, the separated equilibrium is identical to
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the merged equilibrium. As the share of multi-homers increases, two di↵erences emerge. First, as

in Section G.1, the advertiser-side Cournot externality increases, which increases ad load in the

separated equilibrium. Second, if platforms are substitutes, user diversion reduces the incentive to

withhold ad load in the merged equilibrium relative to the separated equilibrium, which increases

ad load in the merged equilibrium relative to the separated equilibrium. In general, ad load can

be higher or lower than in the merged equilibrium, depending on overlap, user diversion, and price

elasticity.

G.3.4 Separated Platform Solution with Uncoordinated Ad Delivery

The problem is

max
↵j

X

i2Uj

pij(↵) · ↵j · Tij(↵)� cj↵j . (T42)

Taking the first-order condition and solving for ↵j gives

↵j =

P
i2Uj

@pij

@↵j
· ↵j · Tij(↵) +

P
i2Uj

pij(↵) · Tij � cj

�
P

i2Uj
pij(↵) · @Tij

@↵j
(↵)

, (T43)

where, assuming that @⇣j

@↵j
⇡ 0,

@pij
@↵j

⇡ �
�
1�O0

aj

�
·
⌘ ·
⇣
Tij + ↵j

@Tij(↵)

@↵j

⌘

Am
� pij⇣j⇣

1� ⇣jO0
aj

⌘
@O0

aj

@↵j

. (T44)

The numerator in equation (T43) captures both the advertiser-side Cournot e↵ect and the business

stealing e↵ect, both of which increase ad load relative to the merged equilibrium. The absence of
@Ti,�j

@↵j
in the numerator reflects the same user-diversion force expressed in the previous sub-section.

This implies that ad load may be higher or lower than the combined equilibrium social optimum.

However, since the separated equilibrium now has ine�ciently duplicated ad impressions, com-

paring ad load versus the social planner benchmark is not su�cient to make welfare judgements.

For example, even if ad load were identical in the separated platform equilibrium with duplication

as in Equation (T35), social welfare would be lower in the separated equilibrium because some ads

would be ine�ciently duplicated, lowering advertiser surplus. See Section 5 for details.

11



Technical Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

H Ad Duplication Experiment Appendix

H.1 Ad Selection and Ad Design

We developed 15 creatives for distinct products spanning five product categories. We selected

products and categories to be representative of typical ads on Facebook and Instagram. To do so,

we first picked five top product categories and the top three advertisers within each category by

ad spending from the 2024 SensorTower Digital Market Index (SensorTower 2024). We identified

each resulting advertiser’s best-selling product and created ads that linked to pages promoting or

allowing users to purchase that product.21 To promote our ads, we created a “product picks”

Facebook page for each product category. Such third-party product recommendations are allowed

by Meta’s terms of use.

Our five product categories were shopping, consumer packaged goods, media and entertainment,

health and wellness, and food and dining. The Facebook pages used to promote products in each

category were called, respectively, “The Shopping Spot,” “Everyday Care Essentials,” “Media

Roundup,” “Health and Wellness Essentials,” and “Culinary Crave.” These pages are public and

viewable on Facebook.22 Ad creatives used public-source advertising materials to approximate

campaigns consumers would likely see. Where relevant, ads link to a site to purchase the advertised

product, and otherwise link to a site describing the product in more detail.

Table T1 summarizes the companies, products, and creatives used within each category.

H.2 Experimental Design Details

For each ad creative, we first recruited 8 audiences to target in campaigns. To recruit audiences,

we ran campaigns targeting US adults aged 18–65. To delineate audiences for retargeting, we used

Meta’s “Custom Audiences” feature. This feature allows advertisers to identify a set of users based

on behaviors or characteristics, such as whether they have previously interacted with another ad

or visited an advertisers’ website. We used a feature that builds an audience based on users who

view at least 25% of a video ad. We made video ads using the 3-second GIFs of the creatives

displayed in Table T1, such that users for whom the ad is displayed for 0.75 seconds became part

of an audience. For each audience, we excluded users from being targeted once they became part

of any of the other audiences to ensure that the eight audiences recruited for each ad were non-

overlapping. The campaigns used to recruit custom audiences were run over four days in January

2025, with a daily budget of $2.
21In August 2024, we used online sources to identify the top selling product for each company over the past month.

When we could not identify clear top selling products, we identified a product recently the subject of a major ad
campaign. We used some discretion to ensure the advertised product was associated with the target company – for
example, although the top selling product on Amazon in July 2024 was the Stanley Cup water bottle, we selected
the Amazon Fire TV stick (second most popular).

22The Facebook page IDs are: 61565619873336 (Shopping Spot), 61565078579057 (Everyday Care Essentials),
61564728493259 (Media Roundup), 61565433650990 (Health and Wellness Essentials), and 61565407492274 (Culinary
Crave).
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We then targeted these audiences with follow-up campaigns that ran for one week and started af-

ter the initial recruitment campaign began. Across audiences, we experimentally varied ad intensity,

ad frequency, and campaign duplication. We designated 4 audiences to target with non-duplicated

campaigns, and the remaining 4 to target with duplicated campaigns. Audiences assigned to the

non-duplicated condition were targeted by one follow-up campaign. Audiences assigned to the

duplicated condition were targeted by two identical follow-up campaigns to induce diminishing

returns.

The four audiences within the non-duplicated and duplicated conditions were assigned to one of

four treatments consisting of a daily campaign budget and campaign objective. These conditions

were: (i) “low spend, clicks objective”, (iii) “low spend, reach objective”, (iv) “high spend, clicks

objective”, and (v) “high spend, reach objective.” Low and high spend campaigns received a daily

budget of $2 and $12 per day, respectively. Campaigns with a clicks objective were given the Meta

performance goal of maximizing the number of link clicks, wheres campaigns with a reach objective

were given the Meta performance goal of maximizing daily unique reach.

For each campaign, we measured the click-through rate, number of impressions, and campaign

reach. We also gathered Meta’s estimates of the combined unique reach of campaigns assigned

to the duplicated condition, which, along with data on unique reach of each individual campaign,

allows us to back out the fraction of a campaign audience that is impressed by both duplicated

campaigns. We estimate campaign frequency as the ratio of number of impressions and reach,

and follow-up campaign reach as the fraction of the initial audience impressed by the follow-up

campaign.

13



Technical Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

Table T1: Duplication Loss Experiment Creatives

(a) Shopping Ads

Company Amazon Temu Shein

Product Fire Stick Shopping Shopping

Ad creative

(b) Consumer Packaged Goods Ads

Company Proctor & Gamble Unilever Nestle

Product Tide Pods Dove Nescafe

Ad creative

(c) Media and Entertainment Ads

Company Disney NBC Universal Amazon

Product Disney+ Peacock Amazon Prime

Ad creative

14



Technical Appendix Digital Media Mergers: Theory and Application to Facebook-Instagram

Table T1: Duplication Loss Experiment Creatives, Continued

(d) Health and Wellness Ads

Company L’Oreal Estee Lauder Olay

Product Revitalift moisturizer Night repair serum Regenerist moisturizer

Ad creative

(e) Food and Dining Services Ads

Company Sonic McDonald’s Wendy’s

Product Sonic’s $1.99 menu $5 meal deal Biggie Bag

Ad creative

Notes: This figure describes top companies and products used to develop ad creatives for the
duplication experiment. Screen captures of ad creatives are for the video ads used to initially
recruit custom audiences, as described in Section H.2, but are identical to the static ads used for
follow-up campaigns.
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I Structural Estimation Appendix

Throughout this appendix section, we use the notation M and Nj to refer to the number of multi-

homers and users on platform j, respectively, satisfying µj = M/Nj and M +
P

j
(Nj �M) = N .

I.1 Average Time Use and FOCs as a Function of Time Use Moments

This appendix describes how to re-write equations (34) and (35) as functions of time use moments.

Define eij := Tij � Tkj as residual time use for group k, and E2
sj
, E2

mj
, and Em12 as the variance

of eij for single-homers on j, the variance of eij for multi-homers on j, and Em12 as the covariance

of ei1 and em2 for multi-homers.

The modeled time-use weighted average of user-level ad prices pi is given by:

P
i2U ↵ · T i (↵m) · piP

i2U ↵ · T i (↵m)
=

P
j

P
i2Uj

↵j · Tij (↵m) · pi
N · (↵1T1 + ↵2T2)

(T45)

where the denominator follows because residual time use averages to zero. Since in the numerator

Tij is multiplied by pi, which itself depends on T i, the numerator depends on residual time use

variances and covariances. Specifically:

X

i2Uj

↵jTijpi =
X

i2Uj

⌘ ·
✓
1 + ⌘0 �

↵ · T i

Am

◆
↵jTij (T46)

= O · ⌘ ·

2

4(1 + ⌘0)↵jTmj �
↵2

j

⇣
T 2

mj
+ E2

mj

⌘
+ ↵j↵�j (TmjTm,�j + E12)

Am

3

5+

(Nj �O) · ⌘ ·

2

4(1 + ⌘0)↵jTsj �
↵2

j

⇣
T 2

sj
+ E2

sj

⌘

Am

3

5 (T47)

The FOC on platform j is:

X

i


@pi
@↵j

·↵ · T i (↵) + pi ·
✓
Tij (↵) +↵m · @T i (↵)

@↵j

◆�
� cj = 0 (T48)

Rearranging slightly:

0 =
X

i

@↵ · Ti(↵)

@↵j

·
✓
pi(↵ · Ti(↵) +↵ · Ti(↵) · dpi

d↵ · Ti(↵)

◆
� cj (T49)

=
X

i


Tij(↵) + ↵j

@Tij(↵)

@↵j

+ ↵�j

@Ti,�j(↵)

@↵j

�
·

pi(↵ · Ti(↵) +↵ · Ti(↵) · dpi

d↵ · Ti(↵)

�
� cj

(T50)
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If i is a multi-homer:

@Tij(↵)

@↵j

= � �j��j

�j��j � ⇢2
,

@Ti,�j(↵)

@↵j

= � �j⇢

�j��j � ⇢2
(T51)

If i is a single-homer:
@Tij

@↵j

=
��j
�j

,
@Ti,�j

@↵
= 0 (T52)

Moreover:

pi(↵ · Ti(↵)) +↵ · Ti(↵) · dpi
d↵ · Ti(↵)

=⌘

✓
1 + ⌘0 �

↵ · Ti(↵)

Am

◆
+ (T53)

↵ · Ti(↵) · @

@↵ · Ti(↵)


⌘(1 + ⌘0 �

↵ · Ti(↵)

Am

�

=⌘

✓
1 + ⌘0 �

↵ · Ti(↵)

Am

◆
+↵ · Ti(↵) · �⌘

Am
(T54)

=⌘

✓
1 + ⌘0 � 2

↵ · Ti(↵)

Am

◆
(T55)

Substituting into equation (T50) and summing across multi-homers and single-homers, we have:

0 = FOCm +
X

j

FOCsj � cj

where:

FOCm = M⌘ · (1 + ⌘0)


Tmj � ↵j ·

�j��j

�j��j � ⇢2
� ↵�j ·

�j⇢

�j��j � ⇢2

�

� 2

Am
M⌘

⇥
↵j · (T 2

mj + E2

mj) + ↵�j · (TmjTm,�j + E2

m12)
⇤

+
2

Am
·M⌘

�
↵2

jTmj + ↵j↵�jTm,�j

�
· �j��j

�j��j � ⇢2
+
�
↵2

�jTm,�j + ↵j↵�jTmj

�
· �j⇢

�j��j � ⇢2

�

(T56)

and

FOCsj = (Nj �M) · ⌘ · (1 + ⌘0) ·

Tsj � ↵j ·

�j
�j

�

� 2⌘

Am
· (Nj �M) ·


↵j · (T 2

sj + E2

sj)� ↵2

jTsj

�j
�j

�
(T57)

I.2 Standard Errors

The covariance matrix of ⇥ is

⌃ = H�1 ·⌦h ·H�1, (T58)
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where H is

H = R0
⇥WR⇥. (T59)

Because
p
n(�̂ � �) !d N(0,⌦�), according to delta method, ⌦h is

p
nh(⇥D,⇡) !d N(0,⌦h) = N(0,R0

⇥WR�⌦�R
0
�WR⇥) (T60)

The matrices R⇥ and R� represent the Jacobian matrices with respect to the parameters ⇥ to be

estimated and the empirical moments �:

R⇥ =
@

@⇥D

h(⇥, �) (T61)

R� =
@

@�
h(⇥, �). (T62)

A consistent estimator of ⌃ is

⌃̂ = Ĥ�1 · ⌦̂h · Ĥ�1, (T63)

where ⌦̂h is

⌦̂h = R̂
0
⇥Ŵ R̂�⌦̂�R̂

0
�Ŵ R̂⇥, (T64)

Ĥ is

Ĥ = R̂
0
⇥Ŵ R̂⇥, (T65)

and ⌦̂� is

⌦̂� =

0

BBBBBBBBBBB@

⌦̂F

⌦̂E

⌦̂D

⌦̂B

⌦̂G

⌦̂P

⌦̂L

1

CCCCCCCCCCCA

. (T66)

In the ⌦̂� matrix just above, ⌦̂F is the sample covariance matrix for

✓n
T̂C

kj

o

kj

◆
from FIES; ⌦̂E

is the sample covariance matrix for

✓n
Ê2

kj

o

j,k

, bEmFI

◆
estimated from FIES; ⌦̂D is the sample co-

variance matrix for

✓n
�j�j

o

j

◆
from FIES; ⌦̂B is the sample covariance matrix for

✓n
T̂B

j

o

j

,
n
⌧̂C
j

o

j

◆
,

estimated using Seemingly Unrelated Regressions in the DA data; ⌦̂G is the sample covariance ma-
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trix of

0

@
(

\
T

Aj
j �TC

j

TC
j

)

j

1

A from Brynjolfsson et al. (2024), ⌦̂P is the variance of p̂m, and ⌦̂L gives the

variance of �̂ from the duplication loss experiment. We calculate ⌦̂P without assuming time-series

draws of Birch (2025) prices follow the same distribution.23

We assume no covariance across di↵erent data sources—for example, between DA, the two

di↵erent FIES experiments, Brynjolfsson et al. (2024), and our duplication loss experiment. Lacking

micro-data for FIES diversion ratio estimates from Allcott, Kiefer, and Tangkitvanich (2025) and

Brynjolfsson et al. (2024), we also assume Cov(�̂I
F
, �̂F

I
) = Cov(\�↵TF

TC
F

, [�↵TI

TC
I

) = 0and that there is

no correlation between estimated diversion ratios, Control group time use, and residual time use

variance. We expect the e↵ect on standard errors to be small, since (i) we control for baseline

time use in diversion ratio estimation, limiting potential correlation with average time use; and (ii)

time use appears approximately jointly lognormal, in which case means and standard deviations

are close to independent.

Since the estimator is just-identified, we use Ŵ = I. We compute the Jacobians of h(·) using
MATLAB symbolic di↵erentiation.

I.3 Sensitivity Matrix

Table T2 presents the ⇤ sensitivity matrix defined in Andrews, Gentzkow, and Shapiro (2017) for

our estimator described in Section 4. In the notation of Appendix I.2, this is �(R0
⇥
IR⇥)�1R0

⇥
I.

As described in Andrews, Gentzkow, and Shapiro (2017), each entry is the local sensitivity of

parameter listed in the row to a small perturbation of the moment listed in the column. We divide

each row by the parameter estimate and multiply each column by the empirical moment, so that

each cell can be interpreted as the local elasticity of the parameter with respect to the moment.

The Facebook and Instagram FOCs are not empirical moments, so we do not multiply those two

columns by anything. Each cell in those two columns can be interpreted as the local percent change

in the parameter in the row with respect to the moment in the column.

Table T3 presents a version of the matrix without multiplying by the empirical moment, so that

each cell can be interpreted as the local percent change in the parameter in the row with respect

to the moment in the column.
23Specifically, we assume that rather than observing 2T observations of pmt , we instead observe T draws of pmtj

on each platform j, where p
m
tj have the same expectation but do not necessarily follow the same distribution. Then

⌦̂p = V̂ar(p̂m) = V̂ar
⇣

p̂mF +p̂mI
2

⌘
= 1

4

⇣
V̂ar (p̂mF ) + V̂ar (p̂mI )

⌘
+ 1

2 Ĉov (p̂
m
F , p̂

m
I ). We estimate each of these components

using time-series variance and covariance for prices on each platform.
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I.4 Aggregate Elasticity of Ad Demand in Merged Equilibrium

We define the aggregate elasticity of ad demand on platform j as

"Dj :=
@Qj

@Pj

· Pj

Qj

, (T67)

where

Pj :=
X

i2Uj

Tij · pi, qi := Am ·
✓
1� pi

⌘
+ ⌘0

◆
, Qj :=

X

i2Uj

Tij · qi. (T68)

The aggregate elasticity of ad demand is the elasticity of time-weighted ad demand, given by Qj ,

with respect to time-weighted ad price, Pj . Since

Qj =
X

i2Uj

Tij ·Am� Am

⌘
Tij · pi + Tij ·Am · ⌘0 (T69)

=
X

i2Uj

Tij ·Am · (1 + ⌘0)�
Am

⌘
Pj , (T70)

we have

"Dj = �Am

⌘

P
i2Uj

Tij · pi
P

i2Uj
Tij · qi

. (T71)

We define the elasticity in this way to preserve intuitive properties of the elasticity in the merged

equilibrium – namely, that a monopolist sets an aggregate elasticity of demand on each platform

weakly above one, strictly so if either costs are positive or users are averse to ad load. To illustrate

this property, note the merged equilibrium problem is:

max
↵

X

i

pi(↵ · T i(↵)) ·↵ · T i(↵)� c ·↵ (T72)

In this notation, the FOC with respect to ↵j is

cj =
X

i

@

@↵j

(↵ · T i(↵)) ·
✓
pi +↵ · T i(↵) · @pi

@ (↵ · T i(↵))

◆

=
X

i

✓
Tij(↵) +↵ · @T i

@↵j

◆
·
⇣
pi �↵ · T i(↵) · ⌘

Am

⌘
. (T73)

Rearranging gives

cj �
X

i

↵ · @T i

@↵j

·
⇣
pi �↵ · T i(↵) · ⌘

Am

⌘
=
X

i

Tij(↵) ·
⇣
pi �↵ · T i(↵) · ⌘

Am

⌘
. (T74)

This illustrates the typical two-sided market intuition that the merged platform balances the elas-

ticity of time use (LHS) with the elasticity of demand from advertisers (RHS). Define the e↵ective

cost of higher ad load as c̃j := cj �
P

i
↵ · @T i

@↵j
·
�
pi �↵ · T i(↵) · ⌘

Am

�
, which accounts for both
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“physical” costs from higher ad load as well costs from lost infra-marginal revenue due to lower

time use. Substitute qi = ↵ · T i(↵). Rearranging equation (T74) gives

c̃j �
P

i2Uj
Tij(↵) · pi

P
i2Uj

Tij(↵) · pi
= � ⌘

Am
·
P

i2Uj
Tij(↵) · qi

P
i2Uj

Tij(↵) · pi
() Pj � c̃j

Pj

= � 1

"D
j

. (T75)

This shows that under our definition of "D
j
, merged equilibrium ad load follows an analogy to the

inverse elasticity markup rule. This implies that "D
j

 �1, with greater absolute value indicating

higher e↵ective costs.

To compute "D
j
, the numerator is the same as equation (T78), divided through by ↵j . The

denominator is

X

i

↵ · T i(↵) · Tij(↵) = M ·
⇥
↵j ·

�
T 2

mj + E2

mj

�
+ ↵j0 ·

�
TmjTmj0 + E12

�⇤

+ (Nj �M) ·
⇥
↵j ·

�
T 2

sj + E2

sj

�⇤
. (T76)

J Miscellaneous Formulas

J.0.1 Average Price per Impression

Average price per actual impression on platform j is:

pj =

P
i2Uj

pij · ↵jTij

P
i2Uj

↵jTij

(T77)

The denominator is straightforward to calculate. In the merged equilibrium, the numerator is:

X

i2Uj

pi↵jTij =
X

i2Uj

⌘ ·
✓
1 + ⌘0 �

↵ · T i

Am

◆
↵jTij

= M · ⌘ ·

2

4(1 + ⌘0)↵jTmj �
↵2
j

⇣
T 2
mj

+ E2
mj

⌘
+ ↵j↵�j (TmjTm,�j + E12)

Am

3

5 (T78)

+ (Nj �M) · ⌘ ·

2

4(1 + ⌘0)↵jTsj �
↵2
j

⇣
T 2
sj
+ E2

sj

⌘

Am

3

5
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In the separated equilibrium, the numerator is:

X

i2Uj

pij↵jTij = (1� ⇣O0
aj) · ⌘ ·

X

i2Uj

✓
1 + ⌘0 �

↵jTij

Am

◆
↵jTij

= (1� ⇣O0
aj) · ⌘ ·M ·

0

@(1 + ⌘0)↵jTmj �
↵2

j

⇣
T 2

mj
+ E2

mj

⌘

Am

1

A

+ (1� ⇣O0
aj) · ⌘ · (Nj �M) ·

0

@(1 + ⌘0)↵jTsj �
↵2
j

⇣
T 2
sj
+ E2

sj

⌘

Am

1

A (T79)

J.0.2 Formula for ⇣j(↵)

By definition:

⇣j(↵) = 1� 

⌘ · (1 + ⌘0)

Ei [Tij(↵) · pm
i
|i 2 Um]

Tmj(↵)
(T80)

Since:

Ei [Tij(↵) · pmi |i 2 Um] = M�1
X

i2Um

Tij(↵) · pmi (T81)

M�1
X

i2Um


⌘ ·
✓
1 + ⌘0 �

↵m · T i(↵m)

Am

◆
· Tij(↵)

�
(T82)

= ⌘ ·

2

4(1 + ⌘0) · Tmj(↵)�
↵m

j

⇣
Tmj(↵m)Tmj(↵) + E2

mj

⌘
+ ↵m

�j
(Tm,�j(↵m)Tmj(↵) + E12)

Am

3

5

(T83)

the formula for ⇣j(↵) is

⇣j(↵) = 1� 

1 + ⌘0
·T�1

mj
(↵)·

0

@(1 + ⌘0) · Tmj(↵)�
↵m

j

⇣
Tmj(↵m)Tmj(↵) + E2

mj

⌘
+ ↵m

�j
(Tm,�j(↵m)Tmj(↵) + E12)

Am

1

A

(T84)
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